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Abstract

The two-phase mixture model developed by Baer and Nunziato
(BN) to study the deagration-to-detonation transition (DDT) in gran-
ular explosives is critically reviewed. The continuum-mixture theory
foundation of the model is examined, with particular attention paid to
the manner in which its constitutive functions are formulated. Con-
nections between the mechanical and energetic phenomena occurring
at the scales of the grains, and their manifestations on the continuum,
averaged scale, are explored. The nature and extent of approxima-
tions inherent in formulating the constitutive terms, and their domain
of applicability, are clari�ed. De�ciencies and inconsistencies in the
derivation are cited, and improvements suggested. It is emphasized
that the entropy inequality constrains but does not uniquely deter-
mine the phase interaction terms. The resulting exibility is exploited
to suggest improved forms for the phase interactions. These improved
forms better treat the energy associated with the dynamic compaction
of the bed and the single-phase limits of the model. Companion papers
of this study [1, 2, 3] examine simpler, reduced models, in which the
�ne scales of velocity and pressure disequilibrium between the phases
allow the corresponding relaxation zones to be treated as discontinu-
ities that need not be resolved in a numerical computation.
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1 Introduction

This paper is the �rst in a sequence of articles on the modeling, analysis
and numerical simulation of deagration to detonation transition (DDT)
in porous energetic materials. It represents a group e�ort of the authors
to critically evaluate and carefully reformulate two-phase continuum mod-
els that might have an extended, physically-based predictive capability for
DDT. The impetus for the larger study, which includes experiments and nu-
merical implementation of models in engineering design codes, stems from a
program based at the Los Alamos National Laboratory (LANL) and aimed
at the development of advanced models to assess hazards associated with
the accidental initiation of detonation in a damaged explosive device. When
damage causes the explosive to become cracked or pulverized, then it is more
susceptible to accidental initiation of violent reaction and detonation.

This study focuses on various modeling issues that arise in the construc-
tion of a two-phase theory of DDT. To be sure, several attempts aimed at
the development of such a theory exist in the DDT literature, and we shall
refer to some of these in due course. We emphasize, however, that this paper
is not an encyclopedic survey, nor even a retrospective, of the �eld. Rather,
we concentrate on what may be viewed as the current state of the art, and
examine it critically, with regard to its theoretical foundations (especially
the manner in which principles of continuum mechanics and thermodynam-
ics are employed in its development), the appropriateness of the modeling
assumptions vis-a-vis the physical system at hand, and the way in which
experimental information is incorporated into the theory. Such an exami-
nation is warranted, and indeed essential, in a problem of such complexity,
so that any weaknesses, inconsistencies and de�ciencies that may exist are
clearly identi�ed. For example, while it is widely recognized that thermo-
dynamics constrains the development of a constitutive theory, the precise
extent of the constraint, and more importantly, the degree of exibility that
it permits, appear not to have been fully appreciated or exploited by the
currently available theories. This paper addresses, explores and clari�es the
issue. It also identi�es other sources of constraint, such as the requirement
that a two-phase description must have an appropriate single-phase limit,
and that in partitioning the dissipation between the phases one must not lose
sight of this fact. The mechanics and energetics of the process of compaction
are examined, with an eye on the extent and accuracy to which these aspects
of the process are included in the theory. This is an important modeling
issue since a proposed theory must not only predict the correct structure
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of compaction waves but also the correct distribution of compaction energy.
After all, it is the compaction energy that is responsible for the process of
ignition.

Even though the ultimate, practical goal is the prediction of DDT in
damaged materials, this study concentrates on the behavior of simpler, well-
characterizable explosives, i.e., granular materials with well-controlled grain
sizes. Two reasons lie behind this narrower focus. First, reliable experimen-
tal information on DDT in granular materials is at hand. Second (and
more important), it is crucial that the behavior of simpler explosives be
thoroughly understood, and predictive models for them developed, before
further complexities associated with de�ning the amount and nature of ac-
cidental damage are inserted into the theory.

The experimental information to which we have just referred comes from
the so-called DDT-tube tests [4], [5], wherein a bed of granular explosive,
such as 30% porous HMX, is subjected to a low-velocity (approximately 100
m/s) impact. Observations show that detonation does not occur immedi-
ately upon impact, but rather, is the culmination of a succession of distinct
events [5], [6], [7]. Dominant identi�able features include (i) a lead com-
paction wave, (ii) a burn front, (iii) a high-density region called a plug, (iv)
a secondary compaction wave, (v) a shock, and �nally, (vi) a detonation
front. Experiments [8] further reveal that (i) length scales for such pro-
cesses as compaction, energy release and heat transfer can be of the order of
the grain size, (ii) the overall scale of the experiment is large compared to
the grain size, and (iii) the most precise, high-resolution measurements [9]
of such quantities as pressure and particle velocity, representing transverse
\averages" over 10 to 100 grains, are very reproducible. The implication
is that the granular explosive is well-behaved, in the sense that its aver-
age response is insensitive to variations in the granular microstructure that
must occur from one experiment to the next. This argues for a \continuum"
hydrodynamic model of DDT in granular explosives, which manages to av-
erage out granularity and its �ne-scale e�ects on the ow. A mathematical
description at the level of the grains, even if it were feasible, would be an
expensive overkill.

Within the continuum context itself there exist further options. There is
the minimalist approach reected in the recent work of Stewart et al. [10],
where the explosive is treated essentially as a single-phase material gov-
erned by the Euler equations of hydrodynamics, with porosity and reaction
progress introduced as independent thermodynamic variables. These added
state variables obey new evolution equations along appropriate Lagrangian
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paths. With adequate calibration this approach can reproduce the observed
primary and secondary compaction wave, plug, and shock-formation behav-
ior seen in the tube test. But if such approaches are to have wider appli-
cation to a broad class of experiments beyond the DDT-tube experiment,
additional complexity in the form of (i) enhanced constitutive theory and
(ii) added state variables would need to be included.

We opt for a two-phase framework, for which there are several moti-
vating factors. First, while the single-phase, minimalist description o�ers a
simpler modeling structure, it has insuÆcient degrees of freedom to describe
the dynamic e�ects of temperature, pressure and velocity disequilibrium.
The structure of two-phase models is better able to deal with such issues,
accepting at the same time the only data that are available for the material
response functions, namely, those for the solid and gas phases in isolation.
The porosity variable also enters naturally in such a description. Second,
two-phase models of DDT have an extensive literature (see below) and repre-
sent a substantial investment, so that a careful consideration of both (i) the
applicability of such models and (ii) the consequences resulting from their
mathematical structure is merited. Third, two-phase models encompass a
great variety of complex wave phenomena. Therefore, such a description
(possibly with additional variables to better model energy localization, dis-
sipation and their e�ect on the chemical reactions) can be regarded as a
superset from which to rationally derive reduced models with fewer phe-
nomena admitted. Viewed in this way, there is a connection to reduced
models which corresponds to some enhanced understanding of the physics.

The most common two-phase treatment of the explosive as a mixture is
explicitly formulated in terms of variables for its two separate constituents:
a granular solid phase and a separate, combustion product gas phase. For a
particularly lucid discussion of this topic see the article entitled \A Theory of
Multiphase Mixtures" by Passman, Nunziato and Walsh which is Sec.(5C.6)
of Appendix 5C in a monograph by Truesdell [11]. An application of this
class of theories to granular explosives is exempli�ed by the work of Baer
and Nunziato [12]; see also the contemporaneous studies of Butler and Krier
[13] and Butler [14], the earlier work of Gokhale and Krier [15], and the
more recent papers of Powers, Stewart and Krier [16], [17]. Bibliographies
of these papers provide a wealth of additional references.

In such an approach, each phase is identi�able and the mixture assumed
immiscible. The principle of phase separation is invoked. Each phase is
separately assumed to be in local thermodynamic equilibrium and described
by a density, speci�c internal energy and velocity. The phases are not,
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however, in equilibrium with each other. The volume fraction of each phase
is an additional variable required to specify the state of the mixture. The gas
volume fraction is referred to as the porosity. Each phase is characterized
by a separate equation of state (EOS). To account for the con�guration-
dependent energy of the granular solid, the EOS of the solid phase depends
on the volume fraction as well as its density and energy. The dynamics is
determined by a system of partial di�erential equations (PDEs). Each phase
separately satis�es conservation of mass, momentum and energy. The non-
equilibrium interactions between the phases are described by source terms
for the exchange of mass, momentum and energy between the phases.

The evolution of the volume fraction variable requires that an additional
equation be speci�ed to a�ect closure of the system. For a system in which
both phases are compressible, Passman, Nunziato and Walsh introduced a
model where closure is achieved with a PDE for the volume fraction. They
envision a thin, interfacial region, deemed to have a microinertia and a
viscosity, that controls the evolution of the volume fraction. This equation
is an attempt to model the way in which the microstructural forces at the
interfaces act to drive the volume fraction towards equilibrium [18]. Thus,
phenomena associated with the discrete, granular nature of the mixture
are accounted for by the EOS of the granular phase, by the form of the
volume fraction equation, and by the nature of the source terms therein.
The dynamical behavior of a granular solid can be very di�erent from that
of the full-density solid phase.

Derivations of the interaction source terms in the context of explosives
(and indeed, for multicomponent ows in general) are usually phenomeno-
logical and heuristic. A common practice is to postulate functional forms
based on observations and experience with simpler problems. The funda-
mental tenets of continuum theory provide some constraints on the func-
tional forms. Alternatively, guidance can be sought from an averaging ap-
proach [19], wherein the source terms have a form relating them to exact
solutions of the microscale equations of motion. For a two-phase mixture of a
granular solid and a gas, three types of source terms arise. These correspond
to (i) interactions at grain-grain boundaries, (ii) interactions at interphase
boundaries, and (iii) uctuations within each phase [19]. An example of the
�rst class is the con�guration pressure, an average of the localized stress at
the contacts between grains resulting from material strength. The second
class is exempli�ed by the energy exchange due to heat transfer between the
phases. Drag on the gas phase, caused by particle-velocity uctuations dur-
ing the tortuous motion of the gas through the granular bed, is an example
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of the third class.
Computing power is reaching the point at which micromechanical com-

putations can be performed and the modeling approximation tested with
numerical experiments; see for example, simulation of shock compaction in
copper powder by Benson [20]. While serious questions remain concerning
numerical resolution and the adequacy of material models that are used,
this development renders the averaging approach for developing continuum
theory more attractive than it has been heretofore.

Regardless of the approach, speci�cation of the interphase interactions
remains the essence of multiphase continuum modeling. Where the various
models di�er most, one from the other, is in their closure assumptions and
source terms. The DDT application presents a special challenge because
experimental information is seldom available over a suÆciently broad range.
As a result, approximations and extrapolations abound. An example is the
con�guration pressure, typically calibrated to quasistatic experiments but
applied to predict dynamical features such as the state behind a compaction
wave. Another example is the assumption that the con�guration pressure
�s is a function only of the volume fraction �s, notwithstanding the fact
that above its yield strength the solid ows and therefore cannot support a
con�guration pressure. Both are examples of approximations that, although
simplistic, are forgiving; the �rst because the sti� EOS of the solid renders
the gross mechanical features of compaction waves insensitive to the approx-
imation, and the second because where �s is inaccurate it is dominated by
the bulk pressure in the solid, i.e. �s=Ps << 1. In other cases, simplistic
approximations lead to diÆculties. We show, for example, that in the limit
as the gas mass fraction goes to zero, insuÆcient attention to detail in the
construction of the exchange terms can have the gas play too signi�cant a
role in the energetics of the dominant solid phase. A primary aim of this
e�ort is to clearly articulate the modeling issues in the DDT application,
and in particular, to clarify the nature of assumptions and approximations,
and where feasible, their consequences through an analysis of the model.

For the purpose of this paper we take the Baer-Nunziato (BN) model as
a starting point [12]. It aims at describing a granular explosive in which a
gas phase �lls the interstitial pores between chemically reacting solid grains.
It is based directly on the previously-cited work of Passman, Nunziato and
Walsh [11] on granular, multiphase mixtures. The velocity, temperature and
pressure of the two phases are allowed to be unequal. A dissipation inequal-
ity for the mixture is employed to formulate the source terms, requiring
that at each point the mixture entropy be nondecreasing with time. A drag
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source in the momentum equations equilibrates velocities, a heat-transfer
term in the energy equations equilibrates temperatures, and a relaxation
equation for the volume fraction serves to equilibrate pressures. The time
rate of change of volume fraction is associated with the advection of the
solid phase, in keeping with BN's association of granularity with the solid
phase. Due to the low pressure material strength of the grains, modeled by
the con�guration pressure, the solid and gas pressures are o�set by �s at
equilibrium.

In contrast to the BN-model, many conventional two-phase uid models
assume pressure equilibrium. The volume fraction is then determined by an
algebraic equation rather than an evolution equation. In some situations,
the constraint on the volume fraction causes the PDEs for the pressure
equilibrium models to become elliptic and ill posed, in the sense that the
PDEs are not evolutionary, i.e., with arbitrary initial data the solution is not
determined for all time. The assumption of a dynamical compaction law in
the BN-model, on the other hand, yields a system of hyperbolic PDEs. These
PDEs have a well-de�ned wave structure, with one pair of acoustic modes
for each phase [21]. A shock in a single phase leads to a pressure imbalance
behind the shock front. At low pressures where reactivity is unimportant,
the source term in the compaction equation provides a relaxation mechanism
to equilibrate the pressures. When the magnitude of the compaction source
term is large, a compressive wave approaches pressure equilibrium within a
narrow zone and the state behind the fully or partly dispersed wave rather
than the single phase shock is of physical interest.

A critical and detailed examination of the BN model reveals certain
de�ciencies and inconsistencies. For example, the forms adopted for the in-
terphase source terms rely heavily on the dissipation inequality for reactive,
two-phase mixtures. The BN source terms are only one realization of the
many possibilities that are compatible with the dissipation inequality, and
the BN derivation appears not to recognize this nonuniqueness. A part of
the nonuniqueness involves the distribution of energy or entropy production
between the phases for each dissipative process. We use this nonunique-
ness to advantage and show that it can be used to correct inconsistencies
and make improved modeling choices in the original BN model related to
compaction work and to the single phase limit (porosity approaching 0 or
1).

Additionally, as Powers et al. [16] have noted previously, the BN model
does not treat in a thermodynamically consistent manner the assumed volume-
fraction dependence of the solid free energy in the development of the solid
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internal energy and/or entropy production. That is, the assumed form for
the di�erential of the solid entropy,

Tsd�s = des �
Ps
�2s
d�s �

�s
�s�s

d�s;

with T , e; �; � and P the temperature, speci�c internal energy, density,
entropy and pressure, respectively, is inconsistent with the pure phase equa-
tion of state, Ps = Ps(�s; es); that BN actually use for the solid. Important
consequences follow inevitably from the inclusion of �s as a thermodynamic
variable, namely, (i) volume-fraction dependence also needs to appear in
the solid-phase internal energy, (ii) quasistatic compaction is modeled as a
reversible process, and (iii) the intergranular stress �s emerges as a natural
thermodynamic conjugate to the volume fraction. To have con�dence in the
model over a wide range of conditions it is important that the source terms
are compatible with thermodynamics, and that each physical process is sep-
arately dissipative. Then entropy is guaranteed to be non-decreasing for
every ow. Moreover, the coeÆcients that characterize each process (such
as heat conduction or drag) can be state dependent and set or empirically
�t independently.

One of the weakest aspects of currently available two-phase theories re-
mains the manner in which they treat chemical reaction/combustion. This
is an area requiring considerable study, and although we identify fruitful
directions for further work, no new burn model is suggested here. The burn
model of the BN theory has the notion of \hot spots" as its motivation
(i.e., centers of rapid reaction forced by the localization of energy at many
discrete locations in the granular solid). But in e�ect, it is calibrated to ex-
periments in a limited dynamical range in the phase space. It does not limit
to other hot-spot motivated burn models [22] used to simulate HE initiation
at higher pressures and very low porosities that �t Pop plot data for distance
of run to detonation as a function of pressure. The burn model does not
explicitly include the e�ect of the dissipation and resulting localized grain
heating that occurs when the granular bed is compacted. It agrees with gas
gun experiments on small HMX samples [23] only for a very limited range of
impact velocities. The development of a rate model that is predictive over
a wide range of conditions is a key modeling issue in need of much further
investigation.

In Sec. 2 we begin with the equations that comprise the Baer-Nunziato
model, and discuss the physical basis of two attributes of BN that dis-
tinguish it from conventional two-phase models, nozzling and compaction.
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Also examined there are the �ne-scale processes whose aggregate e�ect is
reected in the con�guration pressure �s; the manner in which granular-
ity and material strength enter the constitutive theory, and the linkage of
compaction-deposited energy to ignition. The dissipation inequality is the
subject of Sec. 3. We emphasize its role as a constraint on constitutive mod-
eling, and employ it to arrive at forms of the phase-interaction terms that
are more general than those derived by BN. These forms allow us to correct,
in Sec. 4, problems with compaction work in the BN theory. Our results are
summarized in Sec. 5.

2 The Baer-Nunziato model

2.1 Postulates

The physical system envisioned in the BN model consists of a granular bed
of energetic material. The intergranular pores form an interconnected region
that is occupied by the gas phase. The model is postulated in accordance
with the following principles of continuum-mixture theory [24]:

i) Each phase is assigned a density �a, a speci�c volume Va = 1=�a, particle
velocity ua, speci�c internal energy ea, temperature Ta and a volume fraction
�a, where the subscript a can be either s or g, and denotes the solid and gas
phase, respectively.
These variables represent the local, mesoscale material-speci�c average of
the microscopic phase variables. The volume fractions satisfy the saturation
condition, �s + �g = 1. The density and the volume fraction determine the
mass fraction

�a �
�a�a

�s�s + �g�g
;

where clearly, �s + �g = 1.

ii) The principle of phase separation [11] holds.
We assume that on the mesoscale, each phase is in local thermodynamic equi-
librium and characterized by a thermodynamic potential. Phase separation,
essentially the analog of the axiom of equipresence [11] for immiscible mix-
tures, then dictates that the averaged, material-speci�c variables for each
phase (e.g., the Helmholtz free energy 	a, the internal energy ea, the entropy
�a, � � �) depend only on the independent variables of that phase (e.g., the
density �a, the temperature Ta, shear strain, � � �). As a direct consequence of
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the discrete structure of a granular solid, we include the possibility of depen-
dence upon volume fraction, �s; in the constitutive model of the solid phase.

iii) The properties of the mixture are weighted sums of the properties of the
constituents.
Quantities per unit volume, such as density (�) and pressure (P ) are volume
fraction-weighted sums of the individual phase quantities

� = �s �s + �g �g ; (1)

P = �s Ps + �g Pg ; (2)

while quantities per unit mass, such as speci�c internal energy (e) and spe-
ci�c entropy (�) are mass-weighted sums

e = �s es + �g eg ; (3)

� = �s �s + �g �g : (4)

The momentum density is volume weighted and is used to de�ne the mixture
particle velocity

� u = �s(�sus) + �g(�gug) ; (5)

u = �s us + �g ug : (6)

iv) Material-frame indi�erence holds.
The representation of the modeling PDEs and constitutive functions must
be independent of the observer. For the BN model this postulate is equiva-
lent to Galilean invariance.

v) The motion of each constituent is described by balance laws for mass,
momentum and energy that are the same as those for single-phase ma-
terials. These laws can be viewed as evolution equations for the local,
phase-averaged density, momentum and energy of each phase [19]. Interac-
tion among the constituents is described by source terms, which can depend
on the independent variables from both the phases.

vi) The mixture satis�es the dissipation inequality.
Each source term is constructed to model a single exchange process and
these processes are separately dissipative.
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vii) The modeling PDEs are evolutionary.
We require that all modi�cations that the exchange terms make to the basic
single-phase balance laws lead to PDEs that are hyperbolic, i.e., the eigen-
values for the linearized PDEs are real and the eigenvectors complete, so
that the initial-boundary value problems are well-posed [25].

viii) The volume fraction �s is carried with the solid phase.
The asymmetry between the material response of the solid and gas phases
motivates the advection of both �s and �g = 1 � �s, referred to as the
porosity, with the solid velocity. This postulate, as we shall see, leads to the
appearance of nondissipative nozzling terms in the momentum and energy
equations of each phase.

2.2 Governing equations

The balance laws for the model are expressed in terms of a system of seven
PDEs [12], six arising from the conservation of mass, momentum and en-
ergy for each phase, and the seventh, an evolution equation for the volume
fraction, provides closure. The governing equations are:

Conservation of Mass

@

@t
(�s�s) +

@

@x
(�s�sus) = C ; (7)

@

@t
(�g�g) +

@

@x
(�g�gug) = �C ; (8)

Conservation of Momentum

@

@t
(�s�sus) +

@

@x

�
�s�su

2
s + �sPs

�
= PN

@�s
@x

+ fM =M ; (9)

@

@t
(�g�gug) +

@

@x

�
�g�gu

2
g + �gPg

�
= �PN

@�s
@x

� fM = �M ; (10)

Conservation of Energy

@

@t
(�s�sEs) +

@

@x
[�sus(�sEs + Ps)] = PNus

@�s
@x

� PcF + eE = E ;

(11)

@

@t
(�g�gEg) +

@

@x
[�gug(�gEg + Pg)] = �PNus

@�s
@x

+ Pc F � eE = �E ;

(12)
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Compaction dynamics

@�s
@t

+
@(�sus)

@x
= �

�s
�s
F : (13)

Here, the left hand sides of Eqs. (7){(13) are shown in conservation form
and Ea = ea + u2a=2 is the total speci�c energy. The right-hand sides of
Eqs. (7){(12) are source terms that characterize phase interaction. These
terms correspond to mass (C), momentum (M) and energy (E) transfer
between the phases. The mass source C is negative when the solid burns
and is converted to gas. The total mass, total momentum and total energy
are all conserved because the source terms for the gas and solid phases sum
to zero. As we show later, the right-hand side of Eq. (13) describes the
rate of compaction. The eigenvalues of this system of equations are all real.
Except for isolated surfaces in the state space, the linearly non-degenerate
characteristic velocities are unequal and the eigenvectors are complete so
that e�ectively, the PDEs are hyperbolic [21].

Some general remarks about the governing equations, and the quantities
appearing therein, are in order. In the continuum approximation the phases
coexist at each point. The individual phase variables can be viewed as
local, mesoscale averages over a subvolume that is large enough to contain
a suÆcient number of grains so that the local volume average is statistically
meaningful. Underlying this view are two implicit assumptions. First, that
self-equilibration of each phase occurs at a rate much faster than that at
which the phases seek equilibrium with each other. Second, that the agents
forcing changes in the system, such as pressure gradients, themselves vary on
the mesoscale rather than the grain scale. The formal averaging approach,
long advanced by Drew [19], provides some justi�cation for this view, as we
now argue.

Let h i` =
R
( )dV=V` be the `-scale volume averaging symbol, where

` denotes the continuum or mesoscale. Given an indicator function Xa �
f0; 1g, where Xa = 1 in regions of space occupied by material a and zero
otherwise, then hXai` = �a. Upon averaging, the standard, microscale con-
servation equations yield their \averaged" or weighted counterparts that
parallel the standard pure-phase equations [19]. Unlike the latter, however,
the averaged equations contain source terms that reect the fact that for a
nonlinear function, hf(x; y; � � �)i` 6= f(hxi`; hyi`; � � �). These sources repre-
sent interactions both between the phases and within each phase, appearing
as (a) forces and uxes that act across the interfacial boundaries and (b) av-
erages of products of uctuations from the mean �elds within each phase.
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An example of the former are the forces established within grains due to
intergrain contacts and of the latter, intraphase pressure uctuations.

Here we focus on an issue not addressed by Drew; how the nonlinear
constitutive model for ea comes through the averaging when the forces driv-
ing changes on the `-scale are simple compressions. We consider that on the
microscale the response of the solid, ~es(�; T ;�k) is complex; acting thermoe-
lastically at low pressures and plastically at high pressures. In the above, � is
the strain tensor and the �k are added (hidden) internal state variables that
are needed to describe the transition from elastic to inelastic response [26].
Three time scales enter the problem: a short, fundamental acoustic time tc
based on the grain dimension, a longer evolution time t` >> tc based on
the `-scale and a process time scale t� >> tc that characterizes the rates of
change of the hidden variables �k. Here we focus on the limit t� > t`.

At �rst glance, the nonlinear dependence of the microscale, pure-phase
solid EOS function ~es on �, T and �k would result in hXs� ~es(�; T ;�k)i` 6=
hXs�i` ~es(h�i`; hT i`; h�ki`). Given tc << t` and the smoothness of the ap-
plied forces on the `-scale, the uctuations in the strain and temperature
�elds within each grain are short-lived, while the �k are frozen since t� > t`:
Therefore, the �elds evolve quasisteadily on the `-scale. When the grains
are isolated, this leads to uniform �elds and a bulk response within grains,
since the load they experience is hydrostatic. Then, hXs� ~es(�; T ;�k)i` =
hXs�i` ~es(h�i`; hT i`; h�ki`), where h�i` = h�i`; since the average shear strain
hS(�)i` is zero for a hydrostatic load. When the grains are in contact, the
�elds in the grains, although quasisteady, are nonuniform due to the local-
ized nature of the grain-to-grain contacts. Then the average shear strain
hS(�)i` 6= 0; so that hXs� ~es(�; T ;�k)i` 6= hXs�i` ~es(h�i`; hT i`; h�ki`). Since
hS(�)i` is not a variable in this continuum theory, to close the model we ap-
proximate hXs� ~es(�; T ;�k)i` simply as ~esp(h�i`; hT i`; h�ki`)+g(�s; � � � ; h�ki`),
where ~esp is the mesoscale hydrostatic contribution, and g(�s; � � � ; h�ki`) rep-
resents, in an average way, the e�ects on the mesoscale internal energy of
the microscale shear strain hS(�)i` (which is related to the degree of com-
paction, �s). Similar arguments for the gas phase yield hXg�eg(�; T )i` =
hXg�i`eg(h�i`; hT i`). Thus, the microscale material response to simple com-
pressions is used as the mesoscale EOS, with an added term to reect the
e�ects of the averaged localized strains.

Next we turn to a related quantity that appears in the theory as a result
of grain-to-grain interaction. Intergrain contacts produce strains that lead
to contact stresses, displayed in Figure 1 as gray shaded regions with the
lightest gray indicating the highest stress. These stresses are manifest in

13



the BN-theory as a continuum-level con�guration pressure, or intergranular
stress,

�s(�s; � � � ; h�ki`) :

Dependence on �s is natural, as already remarked. The solid phase experi-
ences both the pressure carried by the gas, denoted by arrows in Figure 1,
and the intergranular forces. At mechanical equilibrium, Ps = Pg + �s.

The con�guration pressure and g(�s; � � � ; h�ki`) play a signi�cant role at
low pressure when the solid phase is sti� relative to the gas. The pressure
above which material strength becomes unimportant is referred to as the
crush-up pressure and is of the order of the yield strength; at the crush-up
pressure the pores in a granular bed are nearly squeezed out as the solid
becomes uid-like. A porous bed of granular HMX achieves 1% porosity for
�s � 5 kbar; we say that the crush-up pressure for HMX is about 5 kbar.

We begin a discussion of the compaction equation by observing that
in the BN model, the volume fraction �s serves multiple purposes. Be-
sides being a measure of the strain induced in the grains, it is also the
variable that describes the microstructure of the interface separating the
phases. The theory of Passman, Nunziato and Walsh [11], on which the
BN model is based, postulates an evolution equation for the microstructure.
Such concepts as \microstructural inertia" and \microstructural force" are
introduced to model the evolution of �s with a second-order PDE of the
form

(microinertia) �
d2�s
dt2s

+ (viscosity) �
d�s
dts

= (microstructural forces) ; (14)

where d=dts is the convective derivative with respect to the solid. In spirit
this equation is similar to the pore-collapse model of Carroll & Holt [27],
although its development was couched in a \Rational Mechanics"-type for-
malism [11], [28]. In their model, Baer and Nunziato [12], in e�ect, set the
microinertia to zero and obtain closure by simply postulating the existence
of a constitutive expression relating d�s=dts to the independent variables of
both phases,

d�s
dts

= F(�s; �g; Ps; Pg; �s; � � �) ; (15)

where F is meant to mimic the e�ects of microstructural forces that, on the
continuum level, describe the \resistance" exhibited by the bed to changes
in its con�guration. The form that BN derive is

F =
�s�g
�c

�
Ps � �s � Pg

�
; (16)
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where the parameter �c is called the compaction viscosity due to the analogy
with Eq. (14).

Turning now to the source terms, we have separated out, from the mo-
mentum and energy transfer rates, contributions that were developed by BN.
These include the nozzling terms, proportional to PN ; and the compaction-
work terms, proportional to Pc. BN take the nozzling pressure to be the gas
pressure, i.e.,

PN = Pg; (17)

and the compaction pressure to be the di�erence of the solid pressure and
the con�guration pressure, i.e.,

Pc = Ps � �s: (18)

We shall examine both of these terms in some detail shortly. The residual
momentum exchange fM and the residual energy exchange eE used by BN
are

fM = C us + (Æ +
1

2
C)(ug � us) ; (19)

eE = C (es +
1

2
u2s) + (Æ +

1

2
C) us (ug � us) +H (Tg � Ts) : (20)

Equation (19) is the BN form for the momentum exchange associated with
burning and drag, while equation (20) describes the energy exchange due to
burning, drag and heat transfer. The coeÆcients Æ and H appearing in (19)
and (20) are, respectively, the interphase drag and heat transfer coeÆcients.

In the remainder of this section we examine the constitutive modeling of
the phase-speci�c quantities. We start by briey discussing the compaction
law and the nozzling term.

2.3 Compaction and nozzling

In contrast to typical two-phase uid models [29], the BN-model does not
require the phases to be in pressure equilibrium. Instead, pressures are
related dynamically via the compaction law, Eq. (13). Conservation of solid
mass, Eq. (7), allows the compaction equation to be cast in a more standard
form as

d�s
dts

�
C

�s
= �

�
@�s
@t

+
@(�sus)

@x

�
�s
�s

= F : (21)

Here, �s advects with the solid phase, and the source F measures the rate
of compaction. Without burn, the equilibrium value of �s is given by F = 0
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and corresponds to Ps = Pg + �s. Thus, the compaction equation serves as
a relaxation law that drives the phases towards pressure equilibrium, with
the compaction viscosity �c characterizing the relaxation rate. A favorable
consequence of pressure non-equilibrium is that the model equations are
hyperbolic, rather than of the mixed hyperbolic-elliptic variety typical of
two-phase pressure-equilibrium models [29].

At low pressures the grains are nearly incompressible, i.e., �s � constant.
Then, for a nonreactive system, the compaction law reduces to

d�s
dts

= ��s
@us
@x

; (22)

and the solid pressure is determined by ��s@us=@x = F . Eq. (22) also
corresponds to the incompressible limit of the equation for mass conservation
of the solid; in this limit, therefore, compaction is simply a statement of mass
conservation, i.e., compaction is due to the relative solid-to-solid motion
which reduces the volume of the pores within the bed.

The asymmetric form of compaction dynamics in the BN model (bi-
ased towards the solid), along with the dissipation inequality, forces the
appearance of the nozzling term, PN@�s=@x; in the momentum and energy
equations (see Sec. (3)). The change in porosity on the continuum scale
acts as a nozzle which can either accelerate or decelerate the gas ow and
drive relative motion between the phases. At pressures below the crush-up
pressure of the granular bed, such a porosity gradient can be set up, for
example, across a compaction wave. Figure 2 shows the manner in which
a gradient in porosity (produced by the gradient in the number density of
grains, with a higher grain density indicated as darker) acts on the contin-
uum scale like a nozzle. Nozzling accounts for the average e�ect of the solid
interface on the gas ow. When the pressures are equal, PN = Pg = Ps, the
nozzling term corresponds to the PdV work one phase does on the other
when the internal phase interface varies and changes the volume fraction.

Nozzling terms are included in some two-phase mixture models [19] and
discarded in others [16]. They prevent the BN equations from being put in
a conservative form. This does not cause any problems provided the initial
porosity is continuous, since the PDEs have a well-de�ned wave structure
that maintains continuity of �s [21]. In Sec. (3.2) we show that the nozzling
term is required in order to guarantee that entropy is non-decreasing for all
ows.

Nozzling plays a role at low pressure when the solid phase is sti� relative
to the gas, and for it to have a signi�cant e�ect on the gas ow, drag must be
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small. At high pressure the solid becomes more uid-like, drag becomes large
and nozzling diminishes in importance. Even at low pressures, when the
ambient mass fraction of the gas is small, the solid EOS and the con�guration
pressure �s are suÆcient to predict low pressure compaction waves in a
granular bed, that is, the lead compaction wave in a DDT experiment is
insensitive to the nozzling terms. An example of the e�ect of nozzling on a
piston driven compaction wave is shown in [3].

2.4 Equilibrium thermodynamic response

As discussed above, the BN theory [12] treats the explosive as a mixture
of phase-separated substances [11]. Constitutive relations must be provided
for the phase-speci�c quantities such as the Helmholtz free energy 	a; and
for the phase-interaction or exchange terms such as C, M and E . In this
section, we concentrate on expressions for the averaged phase-speci�c, ther-
modynamic response. These expressions describe how each phase interacts
with itself, including the ways in which granules interact across their inter-
faces. Intraphase response such as friction and viscosity could be included
in the interphase response, although the BN theory omits such processes.

The material-speci�c phase response functions are constructed according
to the postulates enunciated at the beginning of this section, including in
particular, the principles of material frame indi�erence and phase separation.
Thus, 	a is taken to depend on the independent variables �a; Ta; �a; � � � ;
where the dependence on the volume fraction accounts for the energy asso-
ciated with the intergrain contacts.

Continuum mixture theory has been applied to many types of materials
[30, 31], including solids for which the stress and strain tensors are important
variables. The BN model is aimed at describing a granular bed. In contrast
to a pure solid, large shear strains do not necessarily give rise to large shear
stresses because grains can slide past each other. This motivates replacing
the stress tensor by a hydrostatic pressure and the strain tensor by a density.
Material strength is modeled with the con�guration pressure introduced
earlier and discussed below. Thus, the BN model is a uid-like model, and
the set of independent variables is restricted to Sa � (�a; Ta; �a): Since all
the variables are scalars, material frame indi�erence reduces to Galilean
invariance.

With the variable list Sa, the derived thermodynamic variables are the
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entropy

�a = �

�
@	a

@Ta

�
; (23)

the internal energy
ea = 	a + Ta �a ; (24)

the pressure

Pa = �2a

�
@	a

@�a

�
; (25)

and the intergranular stress or con�guration pressure

�a = �a �a

�
@	a

@�a

�
: (26)

Since a gas has no material strength, �g is zero, i.e., the free energy of the
gas has the pure single phase form 	g(�g; Tg).

We start by exploring the consequences of the �s-dependence. The vol-
ume fraction is an internal degree of freedom which can be externally set
only indirectly through an applied pressure. It is natural to enquire about
the equilibrium volume fraction for a porous solid according to the above
constitutive model, as determined by maximizing the entropy for a �xed
solid mass, energy and volume, i.e., for es and � = �s�s constant. The solid
thermodynamic variables satisfy the di�erential relation

des =
Ps
�2s
d�s + Tsd�s +

�s
�s�s

d�s : (27)

Since the constraints imply that des = 0 and d�s=�s = �d�s=�s, it fol-
lows that at equilibrium, Ps = �s. Thus, a direct consequence of the
�s�dependence of 	s is the emergence of �s to describe the resistance of a
granular bed to compaction under an applied pressure Ps. Since the grains
are not bonded together, the granular bed cannot support tension and the
con�guration pressure must be positive.

We now turn to the question of consistently constituting the functional
form for the equilibrium response. Due to the e�ects associated with ma-
terial strength, the response of a granular bed is complex. As already ob-
served, the small contact surfaces over which the grains interact can lead to
large stress concentrations even under moderate loads. Grains can fracture,
and when the local stresses exceed the yield strength, deform plastically.
The resulting changes in microstructure a�ect the distribution of grain sizes
and contacts among grains. As a result, small grains can then be squeezed
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through pores between larger grains, giving rise to frictional heating. Thus,
in addition to hydrostatic pressure arising from density changes, contact
stresses may lead to (i) elastic deformations, (ii) fracture, (iii) intergranu-
lar friction, and (iv) plastic deformation. Since some of these processes are
irreversible, they lead to hysteresis e�ects or di�erent paths in state space
when a granular bed is loaded and unloaded.

The relative mix of reversible and irreversible processes is material-
dependent. For example, compaction of ball propellants is dominated by
(i) rearrangement, (ii) elastic loading and �nally (iii) plastic deformation
[32]. Little or no fracture is observed. On the other hand, compaction of
granular HMX is dominated by fracture [33]. This complexity of material
response poses a signi�cant challenge to the micromechanical modeler.

In principle, given a suÆciently capable micromechanical code, physi-
cally accurate material models and a knowledge of the local microstructure,
the �elds derived from a micromechanical simulation could be averaged to
obtain the continuum scale response function. Though valid in principle, this
approach is impractical, at least in a quantitative sense, given the present
state of the art. A semi-empirical construction, guided by qualitative infor-
mation gathered from averaging, and buttressed by a judiciously selected
suite of calibration experiments, is more likely to succeed. In either case,
additional variables besides �s are sure to be needed to characterize the ma-
terial state in all its complexity, along with evolutionary equations for these
variables. Models more like those used to describe plastic or viscoelastic
behavior, that express stress rate in terms of strain rate, could lead to im-
proved descriptions. Such extended constitutive models are currently under
development for granular explosive materials; see Gonthier et al. [34], [35].

Here we follow BN and continue with the prescription where �s is the
only additional state variable in what is otherwise a uid equation of state,
keeping in mind that while such a continuum model cannot capture all
the details, upon proper calibration it can describe states of mechanical
equilibrium and the gross energetics for a class of applications. We seek
to calibrate 	s(�s; Ts; �s) to data on compressive loading of granular beds
[36]. In these experiments, a uniform load is applied slowly to a thermally
isolated, well-characterized bed of granular HMX with little gas (ambient
air). This results in a uniform, quasistatic compaction of the bed, and serves
to measure how the internal energy of the bed increases on compaction, as
we now show.

The control variable in the experiments described above is the volume
occupied by the porous HMX. A platen, of area A and initially a distance
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L0 from the far side of the sample cell, is moved slowly into the bed so as to
uniformly compress the bed. Since the pressure required to compress the bed
is suÆciently low, the volume �s of the solid grains remains roughly constant
and �s = (ms=�s) = �0s, where the solid volume fraction is �s = (�s=A � L).
The bed remains uniform due to the slowness of compaction, so that

d�s
dt

= �
A�2

s � (us)L
�s

; (28)

where (us)L = dL=dt is the platen velocity. Since the solid is the only
component, the solid energy equation Eq. (11), free of source terms, can be
integrated to get the change in energy of the material,Z L

0

@(�s�sEs)

@t
Adx+ (�sus(�sEs + Ps))LA = 0 : (29)

Bringing the time derivative through the integralZ L

0

@(�s�sEs)

@t
Adx =

d

dt

Z L

0
(�s�sEs)Adx� us � (�s�sEs)LA

and using d=dt = (d�s=dt)d=d�s leads to

d

d�s

Z L

0
(�s�sEs)dx =

�s � (Ps)L
A�s

: (30)

This can be integrated to obtain

es � es(�
0
s; �

0
s) = B =

Z �s

�0s

(Ps)L
�s�s

d�s ; (31)

where the kinetic energy of compaction has been neglected. Since �s is
essentially unchanged in the loading experiment, and (Ps)L is observed to
principally depend on �s, it is reasonable to treat B as a function of �s
alone. We can identify (Ps)L with �s, i.e.,

(Ps)L = �s = �s�s
dB(�s)

d�s
: (32)

The quantity �s is the intergranular stress as measured in the quasistatic
compaction experiments of Elban & Chiarito [36]. (These experiments mea-
sure the applied force on the platen, F = A�s�s which needs to be reduced
by 40% to account for the load carried by friction at the mold wall.) We
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exclude the possibility of a dependence of �s on Ts; more due to a lack of in-
formation. Although, as Ts is increased suÆciently, we expect that thermal
softening can strongly inuence the measured (Ps)L.

We identify the change in energy B(�s), given in Eq. (31), with the
compaction energy

B(�s) =

Z �s

�0s

�s
�s�s

d�s : (33)

With the Ts-dependence of �s neglected and �s � constant, B is the change
in the internal energy of the bed on loading, and describes phenomenologi-
cally the low-pressure, quasistatic, compressive loading of the bed.

Given this change in the energy of the bed, we are at liberty as to how to
represent this as a change in the internal energy of the solid. Here, following
the BN formalism, we elect to associate all of this energy with a reversible
process, such as elastic deformation in the vicinity of grain contacts. That
would imply that neither the temperature nor the density of the solid grains
had changed during compaction, and the internal energy would have the
form es(�s; Ts; �s), with �s as an added internal-state variable to measure
the change in energy. With this ansatz, the intergranular stress, �s has a
thermodynamic de�nition as the force conjugate to the internal-state vari-
able �s. From Eq. (27) it follows that for the assumed constant density
process, the change in solid entropy for a quasistatic process would be zero
with the reversible ansatz.

With �s adopted as an internal-state variable, we seek to develop a
consistent theory that treats B as an approximation to the free energy of
the bed for low pressure loading. In BN, the intergranular stress derived
from B is the only way in which material strength and granularity enter
into the constitutive theory of the solid. The �ts to the experimental data
of Elban & Chiarito for HMX are shown in Figure 3. We note that �s
is relatively insensitive to the grain distribution and packing of the bed,
except near ambient pressure. The experiments also indicate that a single
function approximately describes the progressive crush-up of the bed, even
for a loading cycle that involves unloading followed by reloading during the
cycle.

As the pressure increases beyond the yield strength of solid HMX, then
�s=Ps << 1 and B represents only a small part of the total energy. Then
the material response is dominated by the uid-like, continuous pure phase
solid EOS, 	sp(�s; Ts). The composite EOS

	s(�s; Ts; �s) = 	sp(�s; Ts) +B(�s) ; (34)
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captures both the low and high pressure response of granular HMX to com-
pressive loading and so reperesents an accurate and robust approximation
over a wide range of conditions. It is consistent with the thermodynamic
description given earlier in this subsection with

es = esp +B ; (35)

�s = �sp(�s; esp) ; (36)

Ps = Psp(�s; esp) ; (37)

esp = 	sp + Ts�s : (38)

In particular, in this description there is no additional entropy associated
with generation of grain surfaces, friction and plastic deformation that can
accompany quasistatic compaction.

The total energy supplied to compact the bed can be computed using
the data of Figure 3 and the expression for B(�s). For a typical quasistatic
experiment it is of order 1 � 104 J=kg. Here we give some estimates of the
energy that could be associated with two processes described above and
which can be expected to occur during compaction (one reversible and the
other irreversible): (i) elastic deformation and (ii) fracture. Based on the
low values of these energies relative to the compaction energy, we argue that
for HMX a signi�cant fraction of the compaction energy can be accounted
for by the intergranular friction that accompanies the rearrangement of the
fractured grains. Given the highly irreversible nature of this process, we
examine data on HMX gathered by Coyne, Elban & Chiarito [36] that shows
the extent of the irreversibility.

The elastic shear-strain energy for an isotropic linearly elastic material
is Y 2=(6G�0), where Y is the yield strength and G is the shear modulus.
For HMX the maximum shear-strain energy is 8 � 102 J=kg, based on Y =
0:3GPa and G = 10GPa. This is an order of magnitude smaller than the
compaction energy. Given that this is an overestimate, since only a small
fraction of each grain experiences these forces, it is unlikely that shear-stress
is an energetically important mechanism.

The energy associated directly with fracture is of the order of 2 J=kg.
This is based on the estimate of 0:05 J=m2 for surface energy of HMX [37]
and the surface area per unit mass for grains 0:1mm in diameter. Although
fracture has no direct inuence on the HMX compaction energetics, the
e�ects of intergranular friction that accompany the rearrangement of frac-
tured grains can impact the energetics signi�cantly. As mentioned above,
the experiments of Elban & Chiarito [36] reveal that upwards of 40% of the
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load applied to compact a bed on the platen is carried by friction between
the HMX grains and the smooth walls of the cylinder used to con�ne the
bed. All of the above argue that compaction is highly irreversible and that
plastic deformation and intergranular friction play important roles in the
quasistatic compaction of granular HMX.

The experiments of Coyne, Elban & Chiarito [36] show a hysteresis ef-
fect for the loading and unloading response of HMX. A representative �s�s
vs 1=�s-diagram is shown in Figure 4, for a sample initially at �0

s = 0:73.
In these variables, the area under the curve corresponds to the compaction
energy, Eq. (33). Also shown in Figure 4 are two unloading curves (cor-
responding to release isentropes) from states of compaction �s = 0:95 and
�s = 0:85 and labeled A and B, respectively. A measure of the degree of
reversibility of the compaction process is the ratio of the area below the un-
loading curve to the area below the loading curve. The small ratio implies
that the energy dissipated as heat by irreversible processes is a large fraction
of the total compaction energy for HMX. These results are compatible with
the low values we obtained for the energy estimates (given above).

Alternatively, if we deem that compaction is fully irreversible, and that
the entire energy associated with compaction is dissipated, then we would
need to associate this energy with a change in Ts, and constitute the inter-
nal energy as simply es(�s; Ts). We discussed this possibility in Sec. (2.2)
with the introduction of the hidden EOS variables �k. From Eq. (27) it
follows that the change in solid entropy would be positive if compaction
were assumed to be irreversible. This would correspond to the limit t� < t`.
We could of course assign a fraction of B to reversible processes and the
remainder to irreversible ones. Improvements in the modeling are needed to
capture this added dissipation along the lines of elastic-plastic theory [34],
[35].

Because of its historical interest, we relate our results to those of the
\P � �" model of Herrmann [38] and Carroll & Holt [39]. When no gas is
present, the pressure of the mixture in the P � � model is given by

P = �sPsp(�=�s; esp) ;

which is equivalent to Eq. (37). However, es = esp in the P�� model, so the
energy of quasistatic compaction is fully dissipated. Since �s is assumed to
equilibrate instantly in response to the applied pressure (i.e., �s(P; �s = �0s)),
compaction waves are not dispersive and no added dissipation (over and
above that expected for a shock) enters the model due to dynamic processes
such as compaction waves.
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For our modi�ed BN model, the theoretical description of B(�s) does not
account for any of the dissipative heating, to be sure. However, it is only
the dissipation associated with quasisteady compaction that is absent. Since
compaction is modeled as a dynamic process in this description, Eq. (21),
dissipation due to the non-equilibrium nature of the compaction process is
indeed allowed and can be signi�cant, as we show in the following section.

2.5 Compaction energy and ignition

We now examine the energetics of compaction and the manner in which
compaction is linked to the initiation of combustion in a loosely-packed bed.
During the passage of a compaction wave, a substantial decrease in the vol-
ume of the bed results in work being done on the bed. With only solid
present, this leads to an increase in the internal energy of the solid grains
that is signi�cantly greater than that produced by a shock of comparable
strength in a full-density solid. Unlike quasistatic compaction examined in
the previous section, the compaction wave is a dynamic, irreversible process
and so always generates entropy. For the low-velocity impacts on granular
HMX explosive that are considered likely accident scenarios, the pressures
induced in the bed are seldom above the crush-up pressure of the bed. Thus,
although the increase in internal energy in the granular solid exceeds that
obtained in full-density solid, the increase is still not particularly large, and
the corresponding rise in the bulk temperature alone is insuÆcient to initi-
ate combustion. The increase in internal energy also comes from a variety
of sources, and this puts an added burden on the modeler to faithfully de-
scribe the various dissipation mechanisms that can be present during the
compaction of a granular bed. For the high-velocity impacts more typical
of prompt shock initiation, the pressures and consequently the work done
in compacting and heating the bed are one to two orders of magnitude
greater, leading to the bulk solid temperature being many hundreds of de-
grees higher. This leads to the onset of rapid and wide-spread combustion
in the bulk of the solid grains. Such high-velocity impacts are not of interest
for the explosive safety problem which motivates this study. One concludes,
therefore, that for granularity to play a role in low-speed impacts, some
form of energy localization or \hot-spot" formation is required to reect the
combustion observed experimentally in such situations.

To illustrate some of the issues involved, we consider the propagation
of a one-dimensional compaction wave in gas-free (�g = 0 ) granular bed.
To have all the momentum and energy generated by the compaction wave
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directed at the solid, we set PN = Pc = Pg = 0, Æ = 0 and C = 0 in the
model. In this gasless limit, the applied or mixture pressure and mixture
density are, respectively,

P = �s Ps and � = �s �s :

The jump conditions across such a wave traveling at a constant speed D are
obtained from the conservation of mass, momentum and energy, as

�(us �D) = ��0D ;

P � P 0 = �0Dus ; (39)

esp � e0sp +B �B0 =
1

2

�
1

�0
�
1

�

�
(P + P 0) :

In addition, the state behind the compaction wave is assumed to be in
mechanical equilibrium, i.e.,

Ps = �s :

Two constitutive expressions are needed to completely de�ne the compaction
wave: a prescription for the con�guration pressure �s; and an equation of
state for the solid phase. Both are based on HMX-data gathered from
experiments.

In order to quantify the compaction energetics one turns to the Hugoniot
condition for energy, the third equation of set (39). First, as is appropriate
for weak waves, it is convenient to replace esp�e

0
sp by its linearization about

the initial state,

esp � e0sp = A �

 
Ps � P 0

s

P c
s

!
+ B �

 
�0s
�s
� 1

!
+ � � � : (40)

Here, pressure is scaled in units of the crush-up pressure P c
s ; and

A �
P c
s

�0s �
0
s

; B �
(c0s)

2

�0
s

�
P 0
s

�0s
;

where �0
s and c0s are the Gruneisen parameter and sound speed at ambient

conditions, respectively. Second, we employ the decomposition

1

�0

 
1�

�0

�

!
=

�
1

�0s
�

1

�s

�
1

�s
+
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�0
s �

0
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�s � �0

s

� 1

�s
:
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Then, with the initial pressure neglected, the energy Hugoniot in Eq. (39)
takes the form

A �

�
Ps
P c
s

�
+ B �

 
�0s
�s
� 1

!
+B �B0 � � �

=
Ps
2 �0s

 
1�

�0s
�s

!
+

Ps
2 �0s

�
�s
�0
s

� 1

�
: (41)

The work done on the solid by both compressing the solid grains and com-
pacting the bed are clearly separated on the right hand side, being repre-
sented by the �rst and second terms, respectively.

Our estimates on the response of HMX use the Helmholtz free energy
EOS for pure solid HMX that has been calibrated by Gustavsen & SheÆeld
[23]. For this EOS, the coeÆcient B is given by

B � CvsT
0
s �

0
s +

K0
s

�0s�
0
s

;

where the constants for HMX at the ambient temperature of T 0
s = 300K

and P 0
s = 0 are the speci�c heat, Cvs = 1:05 � 10�6 GPa �m3=(kg � K), the

isothermal bulk modulus, K0
s = 12:9GPa, �0s�

0
s = 2090 kg=m3 and �0s =

1900 kg=m3 . With P c
s = 0:5GPa, we obtain A = 2:4� 10�4 GPa m3=kg and

B = 6:5� 10�3GPa m3=kg: Furthermore, for Ps � P c
s ; B is at most 8:27 �

10�6 GPa m3=kg and Ps=(2�
0
s) no larger than 1:32 � 10�4 GPa m3=kg:

Thus, A, B and Ps=(2�
0
s) are at least an order of magnitude smaller than B.

Since Ps=P
c
s and (�s � �0

s) are both of order unity for the weak compaction
waves under consideration, Eq. (41) implies that to leading order,

1�
�0s
�s

= O

�
A

B

�
� 1 :

Consequently, below the crush-up pressure, the jump conditions for a com-
paction wave do not depend on the details of the energy equation (since
�s � �0s) and are given simply by

�s(us �D) = ��0
sD ;

�s Ps = �0
s �

0
sDus ; (42)

Ps = �s(�s; �s = �0s) :

The important point here is that the lead compaction wave is insensitive to
the energetics of the ow [40]; any uncertainty with regard to the appropriate

26



form for the EOS for a granular solid (e.g., should an explicit �s-dependence
be included or not) has little e�ect on the lead compaction wave. This
insensitivity is displayed in the P � V Hugoniot diagram of Figure 5(a).

On the other hand, if we are interested in modeling the ignition of reac-
tion in a granular bed, then the form we adopt for the solid EOS will play
an important role. Predicting ignition, after all, is the goal of our program.
In view of the order-of-magnitude argument given above, it is clear that the
work associated with compaction of the bed,

Ps
2 �0s

�
�s
�0
s

� 1

�
;

is typically substantially larger than the work associated with compression,

Ps
2 �0s

 
1�

�0s
�s

!
:

Assuming that the work of compression is negligible, and that all the work
associated with change of volume fraction goes to heat the solid, the increase
in the solid temperature due to compaction would be

�Ts =
Ps

2 �0s Cvs

�
�s
�0
s

� 1

�
;

which for granular HMX with �0
s = 0:73 and �s = 1, yields

�Ts
Ps

= 93K=GPa : (43)

Of course, the work associated with change in porosity does not all go into
heating. As discussed previously, in this model an amount of energy B(�s)
is stored as recoverable compaction energy, so that at most only the portion

Ps
2�s

�
�s
�0
s

� 1

�
�B(�s)

is available to heat the HMX. We call this dissipated energy compaction
work. Figure 5(b) shows, on the T � P Hugoniot diagram, the e�ect of
including or ignoring B on heating. The ratio of compaction work to B as a
function of �s is displayed in Figure 6, for two initial porosities (�0

s = 0:65
and �0

s = 0:73). Zero initially (i.e., when �s = �0
s), the ratio increases

with �s; becoming of the order of 2 or 3 when �s = 0:95. For strong waves
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(greater than 10GPa pressure) the ratio is large, reecting the fact that
dissipative compaction work dominates the static compaction energy. On
the other hand, for waves of about 0:5 GPa, B is a signi�cant fraction of
the compaction work, and our assumption of B as a reversible energy with
no dissipation to thermalize the compaction energy leads to a lower temper-
ature behind a compaction wave. One must emphasize, however, that the
total compaction energy amounts to only 8:3 J=g for a 0:5 GPa wave, and
based on the speci�c heat, can a�ect the temperature by about 9K. Since
at lower pressures the amount of energy available is small, undercounting
of the heating due to the irreversibility is important, particularly when the
compaction energy is localized in hot-spots as discussed below. The dissi-
pation that occurs within a compaction wave is discussed further in Sec.
(4.2).

As a further aid in understanding the role played by porosity in the
heating of the solid grains, and the consequent enhancement of ignition
sensitivity, we estimate the dependence of the time to explosion on shock
strength and initial porosity. We use a simple Arrhenius rate law

Rate = (1� �s)Z exp

 
�
T z

Ts

!
;

where Z is the exponential prefactor and T z the activation temperature. The
parameters for HMX are Z = 5� 1019 s�1 and T z = 2:65 � 104 K [41]. For
a given shock pressure P; the porosity is computed from P = �s�s(�s; �s =
�0s); the density �s from the energy Hugoniot and temperature, Ts from the
thermal EOS, all using SheÆeld's calibration for HMX

Ps(�s; esp) =
K0

s

N

( �
�s
�0s

�N
� 1

!
�

�0
s

N � 1

 �
�s
�0s

�N�1

� 1

!
+ �0

s

 
1�

�0s
�s

!)

+ �0
s�

0
s

"
esp � e0sp + CvsT

0
s �

0
s

 
1�

�0s
�s

!#
(44)

Ts(�s; esp) = T 0
s +

1

�0sCvs�0
s

(
Ps(�s; esp)�

K0
s

N

"�
�s
�0s

�N
� 1

#)
; (45)

where N = 10:3. This EOS is reasonably accurate below about 10GPa. The
temperature is an estimate and was not measured.

The initial rate corresponding to Ts is plotted in Figure 7 as a function of
shock pressure for both porous and full-density materials. The rate is very
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sensitive to shock pressure, rising from 10�3 (s)�1 at 2 GPa to 1 (�s)�1 at
5GPa for the porous solid. Prompt initiation will occur in the latter case.
In contrast, even at 10GPa the rate in full-density HMX is less than 1 s�1

and it would take some time for a detonation to develop, if it occurred at all.
This is consistent with the observation that a single crystal of HMX does not
detonate in 50mm size samples when shocked to O( 10GPa) [42]. The vast
di�erence in rate as porosity is varied is due to the exponential temperature
dependence of the rate and variation of shock heating with porosity. Thus,
granularity can have a dramatic a�ect on the chemistry.

The pressures achieved in a typical accident situation are of the order
of ( 0:2GPa ). From Figure 5(b), the temperature rise behind a compaction
wave in a porous bed is only about 15K. This is an inconsequential increase
in the bulk temperature. If the compaction work available to heat the bed
can be deemed to be deposited near the surface of the grains, much as the
\elastic" energy component of B(�s) is localized in small volumes around
the contact surfaces of the grains, then the temperature increase would
scale inversely with the fractional volume deemed to be associated with
the compaction work. A fractional volume of 3% would lead to a local
temperature increase of 450K and an initial reaction rate of 0:2 (�s)�1. A
reaction rate of this magnitude corresponds to vigorous burning. A local
region of high temperature is commonly referred to as a \hot-spot." If the
\hot-spot" is large enough, then the energy generation due to reaction can
exceed the conductive losses leading to signi�cant localized reaction which
in turn could build-up to a detonation wave. Some complications can occur
with the simple bookkeeping described above. HMX is known to undergo a
solid-to-solid phase transformation at 145K above room temperature, which
both consumes energy and results in a 10% volume increase in HMX. This
can act to further load a con�ned granular bed. Also, melting occurs at 200K
above room temperature and the latent heat corresponds to a temperature
change of 216K. These may signi�cantly a�ect the temperature and hence
the rate estimated above.

A leading de�ciency in the present model is that only bulk temperatures
are included and temperature localization is ignored. However, at least qual-
itatively, the model does capture the physical source of the heating, namely,
compaction work. The dissipated energy could be used to develop a ratio-
nal \hot-spot" reaction mechanism. Although this mechanism is probably
the dominant one for ignition in mechanical loading of granular beds at
low pressures, we do not consider the question of these reaction centers in
this work. Instead, we focus on examining the processes or exchange terms
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that describe the dissipation that generates the heating; at least how they
are mimicked in BN-type continuum mixture models for materials with mi-
crostructure, and how these exchange terms inuence the equilibrium wave
structures supported by the model.

Embid, Majda and Hunter [43] have proposed an alternative wave reso-
nance theory for the generation of hot-spots, and imply that this could be
the start of a deagration-to-detonation transition. The theory is based on
a singularity in the gas acoustic equations, noted by Embid and Baer[21],
that occurs when the solid particle speed and either of the gas acoustic char-
acteristics coalesce (i.e., when us = ug� cg). Then the set of eigenvectors is
not complete and the system of PDEs ceases to be hyperbolic. Given that
the drag is large in low porosity systems, and therefore, the solid and gas
particle speeds are nearly equal, this resonance is an unphysical artifact of
the model, and unlikely to occur in any practical situation of interest. If
the gas ow were sonic relative to the solid, the resulting drag force would
increase enormously, leading to a rapid equilibration of the velocities. This
e�ect was speci�cally excluded from the Embid-Majda-Hunter theory.

In the next section we re-examine how the dissipation inequality for the
mixture can be used to de�ne the exchange terms. We demonstrate that the
dissipation inequality, when so applied, permits considerably more freedom
in formulating the exchange terms than BN would imply.

3 The dissipation inequality

The BN model requires two types of constitutive input: (1) the EOSs for
the equilibrium response of the separate components discussed in the last
section, and (2) the source terms for rates of mass, momentum and energy
exchange between phases, which is the subject of this section. Development
of suitable models for both cases requires a blend of analysis and observation.
While analysis provides constraints imposed by the principles of continuum
mechanics, observations provide data for the speci�c material(s) at hand.

The methods for developing single-phase EOSs are rather standard and
widely accepted. To a large extent, the EOS experiments can be carried out
on large, well-controlled samples measuring response on a macroscopic scale
to a limited number of well-understood control variables. However, obtain-
ing a thermodynamically consistent EOS valid over a wide range may well
be diÆcult.

Methods for measuring and parametrizing the exchange processes are not
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nearly so well developed. In large measure this is a consequence of the short
spatial and temporal scales on which these nonequilibrium processes can
occur. For example, the resistance of a low-porosity granular bed to gas ow
is typically measured by slow-ow experiments on macroscopic samples [44].
These measurements can only provide limited information about the high
relative-speed ows that can occur over narrow, yet macroscopic (several
grains), regions.

On the analytical side, the principal tool (besides material frame in-
di�erence and phase separation) is the dissipation (entropy) inequality for
mixtures proposed by Truesdell [11],

(�s � �g) C + (�s�s)
d�s
dts

+ (�g�g)
d�g
dtg

� 0 ; (46)

where d=dta = @t + ua@x is the material derivative of an individual phase.
Roughly the inequality implies that the entropy of an adiabatically insulated
sample of a granular mixture cannot decrease spontaneously. Given that the
temperature, pressure and velocity of each phase together with the volume
fraction de�ne the state of each phase, di�erences in the values of these
variables could be viewed as the forces that drive changes in the state of the
mixture.

3.1 Driving forces

To help motivate our choice of the set of driving forces, we �rst discuss
the state of thermodynamic equilibrium for the mixture of granular solid
and gas. This de�nes the relation between the pressure and temperature
of the two phases when complete thermodynamic equilibrium is achieved.
SuÆciently close to equilibrium, we can view compaction as reversible ir-
respective of whether we adopt the formulation 	s(�s; Ts; �s) (reversible)
or 	s(�s; Ts) (irreversible). In either case, �s should be viewed as repre-
senting the reversible, elastic stress. We consider a nonreactive, quiescent
(i.e., us = ug = 0), adiabatically closed system whose total internal energy,
e = �ses + �geg, total volume, V = �s=�s + �g=�g and mass fractions, (�s,
�g) are constrained to remain constant. For such a mixture, the entropy of
the system at equilibrium is a maximum with respect to all variations which
leave e and V unchanged [45]. Using Eq. (27), the thermodynamic identity
for the granular solid,

des =
Ps
�2s
d�s + Tsd�s +

�s
�s�s

d�s; (47)
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and the corresponding identity for the gas,

deg =
Pg
�2g
d�g + Tgd�g; (48)

the variation of mixture entropy (de�ned by Eq. (4)), near equilibrium and
with e, V , �s and �g held constant, is

Tsd� =
1

�
(Ps � �s � Pg)d�s + �g(Ts � Tg)d�g: (49)

Since the variations d�s and d�g can be completely arbitrary, it follows that
at equilibrium, the following conditions must both hold:

Ps � �s � Pg = 0; (50)

Ts � Tg = 0: (51)

Equations (50{51) are the statements of pressure (mechanical) and temper-
ature (thermal) equilibrium, respectively, for the granular mixture. Thus,
we see that the con�guration pressure represents the equilibrium pressure
di�erence between the phases. With the de�nition of equilibrium at hand,
we now put forth two postulates about the departure of the system from
equilibrium. First, even when Ts 6= Tg, Eq. (50) will continue to de�ne
mechanical equilibrium. Likewise, Eq. (51) will remain our de�nition of
thermal equilibrium even when Ps��s�Pg 6= 0. The second postulate per-
tains to the role of (Ts�Tg) and (Ps��s�Pg) as independent driving forces
which serve as the agents that move the system from equilibrium. These
forces are taken to be directly proportional to Ps � �s � Pg and Ts � Tg.

Similarly, we assume that the departure of (us�ug) from zero is propor-
tional to a force that acts to cause interphase motion. The notion here is
that Stokes-type drag is taken to be the corresponding restoring force. The
forms of these driving forces are certainly consistent with total thermody-
namic equilibrium, when the driving forces are zero. They are also plausible,
and as we shall see, consistent with the notion that the dissipation inequality
is linear in these forces for small departures from equilibrium.

A stable equilibrium for such a sample would require that dissipation
be at least of second order in these di�erences at the equilibrium point.
To ensure that the evolution is dissipative, source terms represented by the
uxes M; E and F are chosen such that the entropy change for the mix-
ture near equilibrium is the sum of positive-de�nite terms (in fact, perfect
squares). Each term corresponds to a distinct physical process (drag, heat
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conduction and compaction work) and these processes are required to be
separately dissipative. This leads to relaxation-type expressions for the ex-
change rates which are consistent with equilibrium. This approach is remi-
niscent of that of Prigogine, who employed nonequilibrium thermodynamics
to develop transport theories for simple mixtures [46].

Baer & Nunziato [12] imply that the exchange laws they derive in this
way are in fact unique. Here we show that the general procedure allows con-
siderably more exibility in the forms for exchange laws. In particular, the
entropy production for each physical process can be arbitrarily distributed
between the phases. Consideration of the underlying physical process is
needed to determine the free parameters in the constrained form of the
source terms. In addition, when some exchange laws (such as the chemical
conversion of solid to gas, and to a lesser extent, compaction) are known
from experiment to be irreversible, and to have a particular dependence
on the state variables, the entropy inequality can be used more creatively.
Then, one can either place more constraints on the form of the exchange law
or take the exchange rate as given, which would then serve to more tightly
constrain the remaining exchange laws. We utilize this idea later in this
section.

3.2 Nonreactive system

We demonstrate this procedure and the issue of nonuniqueness by �rst con-
sidering a simpler nonreactive model. The di�erential thermodynamic rela-
tion for either the solid phase, Eq. (27), or the gas phase (with �g = 0) can
be written as

Ta d�a = dea �
Pa
�2a

d�a �
�a

�a �a
d�a : (52)

On computing the material-speci�c time derivative and eliminating d�a=dta
by means of the individual-phase mass conservation, Eqs. (7{8), one is led
to the dissipation inequality for a nonreactive system,

1

Ts

�
�s�s

�
des
dts

+
Ps
�s

@us
@x

�
+ (Ps � �s)

d�s
dts

�
+

1

Tg

"
�g�g

 
deg
dtg

+
Pg
�g

@ug
@x

!
+ Pg

d�g
dtg

#
� 0 : (53)

This expression assumes that the two-phase system is closed and locally adi-
abatic, i.e., there is neither heat nor mass exchange with the surroundings.
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Upon introducing source terms M and E into the single-phase momentum
and energy equations (see Eqs. (9{12)), and then eliminating the kinetic
energy from the latter, one �nds that

�
des
dts

+
Ps
�s

@us
@x

�
=

1

�s �s
(E � usM) 

deg
dtg

+
Pg
�g

@ug
@x

!
=

�1

�g �g
(E � ugM) ; (54)

where E andM denote the ux of energy and momentum, respectively, that
ow through the interface separating the two phases. In the absence of all
interphase exchange, E =M = 0. Then, neither phase gains or loses energy
and momentum across the interfaces, and the components are said to be
phase-isolated. Further, if no gasdynamic shocks are present, the changes
in the overall entropy of the system,

1

Ts
(Ps � �s)

d�s
dts

+
1

Tg
Pg

d�g
dtg

; (55)

follow the changes in the volume fraction. On using �g = 1� �s and

d�g
dtg

= �
d�s
dts

+ (us � ug)
@�s
@x

(which assigns the porosity to the solid), the above expression is rewritten
as  

Ps � �s
Ts

�
Pg
Tg

!
d�s
dts

+
Pg
Tg

(us � ug)
@�s
@x

: (56)

To reiterate: we have considered changes in system entropy for phases that
are isolated both from each other and from their environment and interact
only via changes in the volume fraction. Importantly, Eq. (56) can be of
either sign, so that the entropy is not guaranteed to be nondecreasing.

When the system is in mechanical, temperature and velocity equilibrium
(i.e., Ps = �s + Pg, Ts = Tg and us = ug), then changes in volume fraction
produce no entropy [46]. In this limit, �s is not required in the modeling.
The standard approach for modeling condensed phase explosives makes these
assumptions [47].
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To have the evolution of the system towards equilibrium reect that the
three forces

(Ps � �s � Pg);

 
1

Ts
�

1

Tg

!
and (us � ug)

can act independently, it is necessary that momentum and energy ow across
the phase interfaces. We now consider how the forms for the uxes M and
E can be constituted to reect our choice of the driving forces in such a way
that the dissipation inequality is satis�ed.

We begin by recognizing that the decomposition

 
zs
Ts
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zg
Tg

!
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1

Ts
�

1

Tg

!�
zs �b+zg �(1�b)

�
+(zs�zg)

 
1� b

Ts
+

b

Tg

!
(57)

allows terms in the dissipation inequality to be expressed as the sum of terms
proportional to the driving forces. By adjusting the parameter b between
the limits 0 � b � 1, the energy exchange due to compaction, say, can be
partitioned either all to the solid (b = 0) or all to the gas (b = 1) or anywhere
in between. We will take advantage of this ability later. Using Eq. (57), we
can rewrite Eq. (56), to get

 
1

Ts
�

1
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(Ps � �s ) � b+ Pg � (1� b)

#
d�s
dts

+ (Ps � �s � Pg)
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!
d�s
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+
Pg
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(us � ug)
@�s
@x

: (58)

This regrouping of terms in Eq. (56) highlights the three agents that drive
changes in the mixture entropy near equilibrium; the di�erences in temper-
ature, pressure and velocity at the interface.

The source term involving (us�ug) is unlike the other terms. It can have
either sign and unlike other sources, cannot be removed with a constitutive
statement on d�s=dts: More than any of the other terms, it motivates the
inclusion of source terms in the momentum and energy equations to insure
that dissipation inequality is satis�ed. Substitution of Eqs. (54) into the
dissipation inequality, Eq. (53), yields
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We now employ Eq. (57) to rewrite Eq. (59), obtaining thereby an expres-
sion for the dissipation inequality in which terms are grouped according to
the three driving forces,
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The new parameters b and w are yet to be determined, though it seems
natural to restrict 0 � w � 1 and 0 � b � 1 in order for the factors of
temperature or pressure to interpolate between the values for the solid and
gas phase. De�ning the three terms in curly brackets to be (Tg � Ts)H,
(us � ug)Æ and

1

�c
(
1� b

Ts
+

b

Tg
) (Ps � �s � Pg) ;

respectively, where H � 0, Æ � 0 and �c > 0, ensures the positivity of each
of the terms in the dissipation inequality. With this ansatz, the exchange
terms are

M =
Pg
Tg

 
1� w

Ts
+

w

Tg

!�1
@�s
@x

� Æ (us � ug) ; (61)

E = H � (Tg � Ts)

� [(Ps � �s) � b+ Pg � (1� b)]F + [us � w + ug � (1� w)]M ; (62)

F =
d�s
dts

=
�s �g
�c

(Ps � �s � Pg) : (63)
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These forms for the exchange laws reect the fact that near equilibrium the
exchanges are taken to be linear in the driving forces. We note that BN
actually use the following alternate form for the compaction source,

F =

8<:
�s�g
�c

�
Ps � �s � Pg

�
; for Ps � �s > 0;

�
�s�g
�c

Pg ; for Ps � �s � 0;
(64)

which is an attempt to model compaction as being irreversible. Since the
signs of F and Ps � � � Pg remain the same, the modi�ed form is also
consistent with the entropy inequality that we have presented in this section.
The selection of the BN form over the equilibrium form given by Eq. (63)
is an example of how independent information can be used along with the
entropy inequality to deduce an improved form for an exchange term. In
the next subsection we employ this idea more directly in treating reactivity.

We identify, as Baer and Nunziato did, H as a heat-transfer coeÆcient,
Æ as a drag coeÆcient and �c as a compaction viscosity. These are the
quantities which, in concert with the prevailing levels of nonequilibrium,
determine the rates of relaxation towards equilibrium. Their relative mag-
nitudes, state-dependent in general, will determine the sequential order in
which the system approaches velocity, mechanical and thermal equilibria.
Since each process is separately dissipative, the coeÆcients H, Æ and �c may
be determined and set independently. This allows the source terms to be
calibrated and applied far from equilibrium.

The nonconservative term

PN
@�s
@x

�
Pg
Tg

 
1� w

Ts
+

w

Tg

!�1
@�s
@x

has already been identi�ed as the nozzling term. In Appendix I we show
that for the system of PDEs to be hyperbolic, w = 1. This implies that
PN = Pg, the BN value. Moreover, there is no entropy production in ei-
ther phase associated with nozzling. It is worth reiterating that not all
two-phase mixture models have a nozzling term. Eliminating nozzling by
setting PN = 0, as suggested by Powers et al. [16], puts the modeling PDEs
in conservation form; a computational advantage. However, the entropy
production for the mixture is not guaranteed to be positive semi-de�nite,
though, in many applications, nozzling is small and the total entropy may
well be non-decreasing. Here we follow the BN paradigm, for which nozzling
contributes no entropy to the mixture.
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With b = w = 1, we recover the BN exchange terms for a nonreactive
system. However, the selection of a particular form for the parameters
should either be based on a compelling physical argument or made with the
realization that the choice is arbitrary. The parameter b is associated with
distributing compaction work between the phases [48] and is discussed in
more detail later in Sec. (4.2).

Finally, we note that even though BN assume 	s(�s; Ts; �s), which then
implies the relation (see [21] Eq. (2.11))

Tsd�s = des �
Ps
�2s
d�s �

�s
�s�s

d�s;

they in fact use an EOS for the solid that does not depend on �s (see [21]
Eq. (2.9), where es(�s; Ps)). This is inconsistent. To remain true to the as-
sumption es(�s; Ps) would require the standard single phase thermodynamic
relation

Tsd�s = des �
Ps
�2s
d�s;

and would lead to some signi�cant changes in the dissipation inequality.
This in turn would have implications for the form of the compaction source
F . Importantly, if the compaction energy B(�s) is not accounted for then
the con�guration pressure, �s would not appear naturally in the theory. We
discuss some of these points later.

3.3 Reactive system

Progress was obtained relatively easily in the nonreactive case, C = 0 because
the issues were mostly mechanical and involved constitutive theory only via
an EOS. In considering chemically reactive systems, we are forced to consider
the very nonlinear constitutive functions typical of such processes. Also,
instead of being symmetric as the \mechanical" processes were (e.g., heat
can ow both to and from the solid), we expect the chemistry to be one-sided,
with C � 0. Thus, we shall make a break with the traditional development
here and include reactivity into the theory somewhat di�erently than the
way in which we included the other processes. This apparent break from
the development followed by BN is, in fact, in keeping with their approach,
because BN never use the expression for C derived from a consideration of
the entropy inequality.

On including chemistry (i.e., mass transfer) in the elimination of d�a=dta
from Eq. (52), the dissipation inequality for a nonreactive system, Eq. (53),
is transformed into the reactive-system version
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As before, the momentum and energy exchange rates, M and E ; enter via
the material-based rate of change of speci�c internal energy, given by
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Following the discussion surrounding Eq. (21), we associate the compaction
rate F with
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Substituting these expressions into Eq. (65) yields
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where

Ga � 	a +
Pa
�a

= ea +
Pa
�a
� �a Ta

is the Gibbs free energy. We note that with the allowance for mass conver-
sion, the Gibbs free energy now enters as an additional forcing term in the
dissipation inequality.
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In the limit of thermal equilibrium (T = Ts = Tg), velocity equilibrium
(us = ug) and mechanical equilibrium (Ps = �s+Pg), porosity is an extrane-
ous variable and F , M and E play no role. Then the dissipation inequality
is identical to the form for a homogeneous system�

Gg �Gs

T

�
C � 0 : (69)

In this case, it follows that the rate of mass conversion is in the direction
to reduce the Gibbs free energy of the system; i.e., C � 0 when Gs > Gg.
Typically, for explosives of interest, the change in the Gibbs free energy
dominates the �rst term in Eq. (68) and the entropy inequality places no
restriction on C.

Here we assume that the mass conversion rate C is known, and show that
the previously demonstrated exibility in choosing the other exchange rates
(i.e.,M and E) is suÆcient to insure that the mixture dissipation inequality
can be satis�ed. In doing this, we focus our attention on the �rst term in
Eq. (68) proportional to C, since it contains the new driving force. The
second term in Eq. (68) presents no new problems since it can be lumped in
with the coeÆcients of the three driving forces for the nonreactive problem
discussed previously. The new modeling assumptions that are speci�c to a
reactive mixture are:

(i) entropy: the entropy of the reacted gas is greater than that of the
solid, i.e., (�s � �g) � 0;

(ii) irreversible reaction: C < 0;

The �rst term in Eq. (68) can be written as 
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By the assumptions above, the second term on the right hand is positive.
Using Eq. (57), we can rewrite the factor in the �rst term on the right hand
side as
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where � is an adjustable parameter chosen to satisfy the inequality�
eg � es + Pg (Vg � Vs)

� 
1� �
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+
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Tg

!
�
h
�g � �s +

�s
�sTs

i
: (71)

With � selected so that Eq. (71) is satis�ed, the contribution of the reactive
term to the dissipation inequality is guaranteed to be positive. The choice
of decompositions for the �rst reactive term in the dissipation inequality,
Eq. (68), is somewhat arbitrary. Other rational choices are possible. The
decomposition allows us to account for the remaining term proportional to
the temperature di�erence in the source terms. Moreover, it reduces to the
BN result when � = 1. Typically, Tg > Ts, eg � es + Pg (Vg � Vs) > 0 and
�g��s is the dominant term in inequality (71). In this case, the choice � = 1
is compatible with the principle of minimum entropy production for a non-
equilibrium process when the temperature factor is assumed to interpolate
between Ts and Tg.

We decompose the second reactive term in Eq. (68) according to
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where f is a free parameter. The two forcing terms are proportional to
di�erences in T and u as occurs in the nonreactive problem.

Grouping the terms in Eq. (68) according to the forces represented by
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�

1
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�
, (us � ug) and (Ps � �s � Pg), the source terms

can be chosen to form sums of squares, thus insuring positivity. The result
is
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d�s
dts

�
C

�s
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�s �g
�c

(Ps � �s � Pg) ; (75)

where
PN = Pg and Pc = (Ps � �s) b+ Pg(1� b): (76)
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With � = 1, all the energy released by the reaction is deposited in the
gaseous reaction products. Typically, when burning occurs Tg > Ts and
eg�es+Pg (Vg�Vs) > 0. Then � > 1 corresponds to distributing some of the
energy of the reaction to the solid phase reactants. In principle, this could
be accounted for by heat conduction, i.e., in the heat transfer coeÆcient
H. Similarly, � < 1 would withdraw additional energy from the solid and
transfer it to the gas. This is possible when the reaction corresponds to
a process such as evaporation but is not physically plausible for a highly
exothermic irreversible reaction.

In addition to satisfying the entropy inequality the source terms must be
compatible with Galilean invariance. The left-hand sides of the internal en-
ergy equations, Eqs. (66)-(67), are Galilean invariant. Therefore, the source
term on the right hand side must be Galilean invariant as well. The terms
involving the velocities are given by:

1

2
(u2s � u2g) (1� f)

C

�s�s
; for the solid;

Tg
2Ts

(u2s � u2g) (1 � f)
C

�g�g
�

Æ

�g�g
(us � ug)

2; for the gas.

In both cases Galilean invariance requires f = 1.

3.4 Additional dissipation terms

There are two additional degrees of freedom related to the distribution of
energy from drag. First, adding a term to the energy source,

E ! E + aÆ(ug � us)
2;

changes the total dissipation due to drag from Æ(us � ug)
2=Tg to

Æ

 
a

Ts
+
1� a

Tg

!
(us � ug)

2:

This is positive for 0 � a � 1. The choice a = 0 in the BN-model corresponds
to assigning all the dissipation from drag to the gas phase.

The second degree of freedom is related to the fact that the particle
velocity changes when the material burns; i.e., us ! ug. Adding a drag term
to the sourcesM!M��(ug � us) C and E ! E � 1

2�(ug + us)(ug � us) C
increases the entropy production of the mixture by �1

2�C(ug � us)
2. For
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an irreversible reaction, � � 0 would satisfy the entropy inequality and also
is compatible with Galilean invariance. The choice � = 0 in the BN-model
minimizes the entropy increase due to drag when the material burns.

We now summarize the development of the interaction source terms.

(i) The dissipation inequality constrains but does not uniquely determine
the source terms.

(ii) The physical requirements of Galilean invariance and a well posed ini-
tial value problem (hyperbolic system of PDEs) provides additional
constraints (w = 1 and f = 1).

(iii) The remaining degrees of freedom must be determined based on ap-
plication dependent considerations.

(iv) The BN model is recovered when b = � = 1 and � = 0. Setting
� = 1 gives a term es in the energy source term and seems natural
for the energy balance equations. When the change in Gibbs free
energy dominates the burn, the entropy inequality would not restrict
�. The parameter b is related to the distribution of compaction energy
between the phases.

(v) When the solid-phase EOS is constituted as an EOS for a granular
phase (i.e., volume-fraction dependence is included), the con�gura-
tion pressure �s appears "naturally" in the compaction law. However,
this formalism models quasistatic compaction as a reversible process.
In order to reect the irreversibility seen during the quasistatic com-
paction of HMX, additional variables and source terms will need to be
introduced to model such processes as fracture, plastic deformation,
and frictional heating. The entropy inequality will continue to be sat-
is�ed if these were separately dissipative, and each added a positive
de�nite contribution to entropy production [49]. Such an approach is
the subject of recent work by Gonthier et al.[34].

In the following sections, we show that the parameters are related to how
the dissipation from each process is distributed between the phases. We
suggest a number of expressions for the exchange terms that are physically
more plausible than those used by BN.
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4 Distribution of dissipation between phases: Mod-

i�ed interaction source terms

In their derivation of a two-phase model, Baer and Nunziato [12] used the
entropy inequality to motivate the choice of the source terms for the in-
teraction between phases. We have shown that many di�erent choices are
possible that satisfy the overall entropy inequality, and suggest the following
modi�cations to the BN source terms:

eE = H(Tg � Ts) + us fM+ aÆ(us � ug)
2

+

�
�
1

2
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�
C; (77)

where 0 � a � 1 and � satis�es Eq. (71), and

Pc = (Ps � �s)b+ Pg(1� b); 0 � b � 1: (78)

In this section, we argue on physical grounds for reasonable choices for the
parameters a, b and �. For this purpose, its helpful to record the individual
phase energy and entropy equations, where we have taken f = w = 1 in
Eqs. (66)-(67). We get for the solid,
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where we have used Eq. (27), and for the gas
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We have rewritten the left-hand side of each individual-phase energy equa-
tion so as to highlight the material-based, isolated-phase, �rst-law form of
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the equation. This has the e�ect of moving the compaction-related part of
@ua=@x to the right hand side as a source term. Thus, the apportioning
of dissipation between phases is controlled for drag by a, for compaction
by b, and for burn by �. Also, Eqs. (79){(80) exhibit the property of the
model that quasistatic compaction (i.e., Ps = �s + Pg) does not generate
any entropy in either phase, which is a consequence of our thermodynamic
description of B(�s) as a potential energy.

The assumption that the solid has a sti� EOS relative to the gas leads to
the formulation of an advection equation for compaction dynamics, Eq. (21),
along solid particle trajectories. Consistent with this idea is the consignment
of the entire drag dissipation to the gas. Thus, at low pressures when the
compaction dynamics is physically reasonable, the choice a = 0 is appro-
priate. At higher pressures the drag is not signi�cant compared to other
dissipative processes, in particular burn, so the partition for drag is unim-
portant there.

Usually the empirical form used for the reaction rate is taken to be a
strong function of gas pressure once the ignition criteria for the reaction is
exceeded. Thus, at low pressures taking � = 1 and sending the reaction
energy to the gas would magnify the reactive response of the granular bed.
As the pressures increase and Ps � Pg, the reactive response would be
insensitive to the value of �.

In actual fact, the forms presented for the exchange terms should be
thought of as a �rst guess. More information on the microstructural physics
needs to be developed to constitute the continuum-scale exchange terms used
in such theories as BN with improved realism. Nevertheless, if physically
plausible exchange terms of the sort we have derived are used intelligently, we
should be able to explore whether the phenomena observed in experiments
on granular explosives can be sensibly mimicked by multiphase continuum
mixture models such as a modi�ed-BN. Using such modi�ed source terms, we
now show how inconsistencies in the BN-model related to compaction work
and the single-phase limit can be corrected by appropriately modifying the
source terms.

4.1 Compaction work

Here we discuss the dissipative terms associated with compaction in this
theory called \compaction work". These dissipative terms contribute com-
paction related energy to the mixture in addition to the previously discussed
contribution to the energy of a granular solid, B(�s). We argued that B(�s)
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represented an energy that was localized near the contact surfaces of the
solid grains. This compaction energy, discussed in Sec. (2.5), is measured in
the quasistatic compaction experiments of Elban & Chiarito [36] in which a
granular material within a cylinder is slowly compressed by a piston. The
\compaction work" terms play no role there; being associated with a dy-
namic process, they play a role only in dynamic compaction experiments,
and in general lead to a rate dependence of the achieved end state.

Recall that compaction dynamics involves terms proportional to F . In
the original BN-model, where b = 1, the compaction process is dissipative
for the gas phase since the entropy change of the gas is given by

(Ps � �s � Pg)F / (Ps � �s � Pg)
2 � 0 ;

whereas the entropy change for the solid is zero. Our modi�cation to the
exchange terms includes a parameter 0 � b � 1. It allows us to distribute the
compaction work between the phases in any fashion, with the contribution
to both the solid and gas entropy equations, Eqs. (79)-(80), being positive

(1� b)(Ps � �s � Pg)F � 0; for solid,

b(Ps � �s � Pg)F � 0; for gas.

The term b(Ps��s�Pg )F , which appears with equal magnitude but opposite
sign in the individual phase equations, sets the partition of the energy of
compaction between the solid and the gas. This is a similar functionality to
the drag terms that we considered earlier. When b takes on the BN value
of 1, the gas would gain the maximum amount of energy allowed during
compaction, while none of the compaction energy would go to the gas when
b = 0. The term �sF on the right hand side of Eq. (79) consistently
represents the increase in the quasistatic compaction energy of the solid and
(Ps � �s � Pg)F represents the increase in the internal energy of the solid
due to compaction work, as we now show.

We integrate the solid energy equation, Eq. (79), under the following
assumptions: (i) �s = �0s, because as we discussed in Sec. (2.5) the density
of the solid phase does not change much on compaction. (ii) Compaction
provides suÆcient dissipation to lead to a fully dispersed steady traveling
wave pro�le. (iii) With a negligible gas mass fraction, Pg � 0. Then for a
compaction wave we obtain

4es �

Z 2

1

dB(�s)

d�s
d�s +

Z 2

1

(1� b)(Ps � �s)F

�0s �s
dts ; (81)
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where the subscripts 1 and 2 denote the initial and �nal compaction states.
The �rst term on the right hand side in Eq. (81) is the quasistatic com-
paction energy from the intergranular stress, denoted B in Eq. (33). The
second term is the dissipative compaction work due to the dynamic com-
paction process. The sum of the two terms is determined by the Hugoniot
jump relation, Eq. (41) given in Sec. (2.5)

4es �
Ps
2 �0s

�
�s
�0
s

� 1

�
;

where we have taken �s � �0s. As we showed in Sec. (2.5), the quasistatic
compaction energy is a third of the dissipative compaction work when ma-
terial initially at �0

s = 0:65 is dynamically compressed to 5% porosity.
The parameter b distributes the compaction dissipation between the solid

and gas phases. The choice b = 1 in the original BN-model corresponds to
all the compaction dissipation occurring in the gas. In this case, when the
gas mass fraction is small (as occurs for the lead compaction wave in a
DDT tube experiment), attributing all the dissipation to the gas leads to
an unphysically high gas temperature, much higher than the temperature
behind a detonation wave. This is because the �xed energy from compaction
is placed into an arbitrarily small mass of gas, as we show in the next
subsection.

A better choice for the parameter is b = 0. This corresponds to at-
tributing the compaction dissipation to the solid. As the next subsection
also shows, this choice is needed to obtain fully dispersed weak compaction
waves. Alternatively, b = �g or Pg=P would distribute the dissipative com-
paction work between the solid and gas in a physically plausible manner.

4.2 Single-phase limit

As the mass fraction of the gas becomes vanishingly small, it is natural to
expect that the inuence of the gas on the behavior of the system should
decline accordingly, and in the limit the model should reduce to that for
a gasless porous solid. We now explore whether this single-phase limit is
achieved in a consistent way.

In order to derive the limit, we start with the assumption that the gas
has a small mass fraction, i.e.,

�g�g << �s�s: (82)
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Below crush-up the porosity may be moderate and then the above condition
holds because the gas is far less dense than the solid (�g << �s). Above
crush-up the porosity is small, �g << 1; causing the above condition to be
satis�ed even when the gas has been compressed to a density comparable
to that of the solid (�g = O(�s)). We also assume that the velocities us; ug
and the speci�c internal energies es; eg are of order unity. Since pa=�a is a
measure of ea; the condition on the internal energies implies that pa = O(�a)
for both phases as well. It then follows that

�gPg << �sPs and �g�gug << �s�sus: (83)

For the mixture variables, Eqs. (82) and (83) imply that

� � �s�s + �g�g � �s�s;

P � �sPs + �gPg � �sPs;

e � (�s�ses + �g�geg)=� � es;

u � (�s�sus + �g�gug)=� � us:

As a result, the gas contributions can be neglected in the mixture equa-
tions for the conservation of mass, momentum and energy (obtained by
adding together respective contributions from each phase in Eqs. (7)-(12)),
reducing them to the standard, single-phase uid equations,

@�
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+
@�u

@x
= 0;

@(�u)

@t
+
@(�u2 + P )

@x
= 0; (84)

@(�E)
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+
@[(�E + P )u]

@x
= 0;

@�s
@t

+ u
@�s
@x

= F : (85)

Although derived above from the conservation laws for the mixture, Eqs.
(84) are simply the balance laws for the solid phase alone, with the exchange
terms removed. For consistency, therefore, the exchange terms in the solid-
phase equations themselves must vanish in the single-phase limit. In order
to ensure the satisfaction of this requirement, we examine the momentum
and energy exchange processes in turn.

It is natural to take the mass exchange rate C = 0 in the single phase
limit; otherwise, the gas mass fraction will not stay small. In the momentum
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exchange term M; the only contributions that remain in the absence of
chemistry are those due to nozzling and drag, so that the solid momentum
equation (9) reduces to

@

@t
(�s�sus) +

@

@x

�
�s�su

2
s + �sPs

�
= Æ(ug � us)� Pg

@�g
@x

:

The aforementioned consistency requirement forces the nozzling and drag
combination on the right-hand side to be vanishingly small. Now the noz-
zling term limits to zero either because Pg << 1 or because �g << 1: The
drag term Æ(us � ug) must then also vanish on its own, i.e.,

Æ(us � ug) << 1:

In order to assess the consistency of the energetics in the single-phase limit,
we turn to the solid energy equation (11). With mass exchange C set to zero
and drag neglected, this equation reads
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� [b(Ps � �s) + (1� b)Pg]F :

Here we have ignored heat transfer between the phases as well, to ensure
that the single-phase limit exists even in the worst case, when the gas is
unable to transfer any heat back to the solid. As argued above, the nozzling
term on the right-hand side of the above equation is negligible, so that the
compaction term must be vanishingly small on its own. Below crush-up,
when Pg is small but �g (and hence F) can be moderate, this requires
that the partition coeÆcient b must be set to zero. Above crush-up, the
compaction term is negligible because porosity (and hence F) is small.

To complete the argument we examine the entropy form of the gas energy
equation

�g�g
�deg
dt

�
Pg
�2g

d�g
dt

�
= b(Ps � �s � Pg)F ;

obtained from Eq. (80), where once again the chemical, drag and heat-
transfer contributions have been neglected. The left-hand side vanishes in
the limit, and the selection b = 0 made above causes the right-hand side to
vanish as well.

Thus we see that the one-phase limit is consistently attained. Addition-
ally, the deposition of all compaction work into the solid provides a natural
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dissipation mechanism for weak compaction waves to be fully dispersed, a
phenomenon observed in practice. The above analysis corrects a de�ciency
in the BN { model which, having made the choice b = 1 and thereby assign-
ing all compaction work to the gas, is unable to limit properly.

5 Final remarks

Modeling the behavior of damaged explosives and propellants is important
for safety studies. The wide disparity between the particulate scale of the
damaged material and the scale of the device would make a micromechani-
cal model impractical. Additionally, reproducibility of DDT experiments on
granular HMX implies a well-behaved response, in the sense that the \aver-
aged" behavior is insensitive to variations in the microstructure that occur
from experiment to experiment. These observations argue for a continuum
model, one that would employ a two-phase framework to account for the
solid grains of the explosive and the gaseous products of combustion.

Various versions of a two-phase, continuum theory of DDT have been
proposed. Among the latest, and more prominent, examples of this approach
is the Baer-Nunziato model [12]. This model has been tested by compar-
ing its computational results to experimental observations from DDT tube
experiments with granular explosives. Appropriately calibrated, the model
can reproduce quite well a subset of the available experimental observations,
but not all of the impact data as the projectile velocity varies [9, 8]. To eval-
uate accident scenarios it is important for a model to apply over the wide
range of conditions that may occur.

In this paper we have critically examined the continuum-mechanical un-
derpinnings of the BN model; both the stated physical approximations and
the tacit assumptions upon which it is based. Given the complexity of the
physical problem being modeled, such an examination is absolutely vital so
that the strengths of the model, as well as its limitations, are clearly identi-
�ed and understood before any extensions are undertaken or generalizations
attempted to broaden its range of validity.

The BN model requires constitutive information on two levels: 1) an
EOS for each of its two constituents, and 2) rate expressions for the ex-
change terms that act across the particulate/gas interfaces. We have re-
examined the formulation of the material-speci�c constitutive terms and
identi�ed their physical basis; a feature not present in the original deriva-
tion. Inconsistencies in the EOS for the granular solid have been corrected.
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BN relies heavily on the dissipation inequality for the development of con-
stitutive expressions for the interfacial exchange rates. We demonstrate
that this inequality allows considerably more exibility in constraining the
interphase exchange terms than has been suggested by BN. We identify
and exploit this exibility to construct physically improved exchange terms.
These improvements allow one to remove inconsistencies from the original
formulation, especially those connected to single-phase limits and subsonic
dispersed compaction waves. Both require that the dissipative compaction
work be apportioned to the solid phase rather than the gas phase as in the
original model.

In order to extend the domain of applicability of the model and to in-
crease its utility as a tool for safety predictions, several improvements remain
to be made. The present formalism, wherein the solid-phase internal energy
has a volume-fraction dependent component, treats the compaction energy
as a potential and hence, quasistatic compaction as reversible. Further work,
along the lines indicated by Gonthier et al. [34], is needed to capture the ob-
served irreversible aspects of slow compaction. With the simple constitutive
model of compaction energetics and con�guration stress, the uid-like BN
model, as it stands, can describe subsonic compaction waves and DDT. To
have an extended validity in some multidimensional situations, the model
will need to be extended to treat other properties dependent on the material
strength of the grains, such as mesoscale shear.

Burn models, at the moment, are the weakest feature of the theory. SuÆ-
ciently strong compaction waves lead to hot spots, i.e., regions where energy
is localized. Owing to the sensitivity of the reaction to temperature, these
hot spots are the sites of ignition, and dominate the rate of combustion prior
to the onset of detonation. Ignition at hot spots depends most strongly on
the size and temperature of the hot-spot itself, and not on the bulk tem-
peratures that appear in the continuum theory. While the (experimentally
derived) compaction work describes the net energy available for ignition,
the theory is silent on how this energy is partitioned (localized). It needs
constitutive information, from experiments and possibly, detailed microme-
chanical calculations, about the phenomenon of localization and about the
way it initiates ignition. Additional degrees of freedom are required in BN
to treat such issues. Without such a feature, DDT models are not likely to
be applicable over a suÆciently wide range of conditions.

The model, in its present form, is designed to deal only with a granular
material that is well-characterized. What variables are needed to charac-
terize damage in an explosive remains an important but open question that
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must be addressed successfully if the model is to be used for engineering
studies of explosive safety.

Whatever constitutive expressions are in place, they contain within them
information about the length and time scales of the underlying microstruc-
ture. These scales, in turn, determine the spatial and temporal extents of
the zones in which the exchange processes strive to move the system towards
equilibrium. Accuracy requires that in a numerical computation, these zones
be adequately resolved. If their characteristic scales are thin compared to
the physical dimensions of the system being examined, the associated com-
putational burden could be prohibitively excessive. Such a situation is ripe
for exploring asymptotic reductions of the model, in which the thin zones
would be shock-like discontinuities that need not be resolved, and across
which appropriate variables would undergo predetermined jumps. For ex-
ample, experiments on permeation [44] as well as numerical simulations with
the BN model [48] show that at low porosity (relevant to the situation at
hand) the drag is high, Æ � 200 kg=(m3 � �s), and the time scale for velocity
equilibration is thus short,

�u � �g�g=Æ = 0:1�s ;

leading to a length scale for velocity equilibration based on the solid sound
speed, cs of �ucs � 0:3mm. This scale is comparable to the grain size,
and thus very small relative to the scales at which the continuum model
holds. Thus, over major portions of the DDT event, carrying two velocity
variables is an unnecessary complication because the source terms associated
with drag are sti�. In addition, the two velocities lead to diÆculties at
the interface with a nonporous inert material which has only one velocity.
(Witness the pressure oscillations at the interface in �gure 5 of [50], where
BN-based computations of impact experiments are reported.) This suggests
a natural reduction of the model, over a signi�cant portion of the DDT
event, to one which carries only one velocity to a �rst approximation. At
pressures above the yield strength of the explosive grains the length scale for
pressure equilibration is found to be small as well, thus motivating a further
reduction to a single pressure. These reduced models, economical from both
analytical and computational viewpoints, are derived [2] and studied [3] in
two forthcoming papers in this series.
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Appendix I: Hyperbolicity

The modi�ed source terms derived in Sec. (3.2) can a�ect the mathematical
structure of the modeling PDEs. Given our postulate that the modeling
PDEs should be evolutionary (hyperbolic), in this appendix we examine
whether the modi�cations to the nozzling term (i.e., allowing w 6= 1) can
lead to PDEs that are not hyperbolic. To simplify the analysis, we use P , u
and � as the dependent variables for each phase and set all algebraic source
terms (such as heat transfer, drag, compaction and chemical reaction) to
zero.

The evolution equations for the solid and gas phase entropy are

�s�sTs
d�s
dts

+ (1� w)(us � ug)PN
@�s
@x

= 0 ; (86)

�g �g Tg
d�g
dtg

� (1� w)(us � ug)PN
@�s
@x

= 0 : (87)

The solid and gas mass equations can be put in a more convenient form by
eliminating Va using the thermodynamic identities

Vs dPs = �sPs dVs +�sTs d�s ;

Vg dPg = �gPg dVg +�gTg d�g ;

where �a is the Gruneisen parameter. In deriving these identities we have
used the de�nition of the adiabatic exponent

a = �

�
@ lnPa
@ ln�a

�
�a;�a

=
�ac

2
a

Pa
;

where ca is the sound speed. The source-free solid and gas phase mass
equations thus become

�s
dPs
dts

+ �s�sc
2
s

@us
@x

� �s�s�sTs
d�s
dts

= 0 ; (88)
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�g
dPg
dtg

+ �g�gc
2
g

@ug
@x

� �g�g�gTg
d�g
dtg

+ �gc
2
g(us � ug)

@�s
@x

= 0 : (89)

The source-free solid and gas momentum equations can be written

�scs
@Ps
@x

+ �s�scs
dus
dts

+ (Ps � PN )cs
@�s
@x

= 0 ; (90)

�gcg
@Pg
@x

+ �g�gcg
dug
dtg

� (Pg � PN )cg
@�s
@x

= 0 : (91)

This system of PDEs, Eqs. (86-91) plus Eq. (21), can be written as a
matrix equation

H @t~q + F @x~q = source ;

where
~q> = (~q>s ; �s; ~q

>
g ) ; (92)

and the single phase variables are ~q>a = (Pa; ua; �a). By taking linear com-
binations of the rows we �nd

eF � H�1F =

0BB@
eFs

~S 0

~0
>

us ~0
>

0 ~G eFg

1CCA ; (93)

where eFa is the ux matrix for the single phase uid equations

eFa =

0B@ ua �a c
2
a 0

Va ua 0
0 0 ua

1CA ; (94)

and the coupling of the phases with the volume fraction is given by the
vectors

~S =

�
�s(1�w)PN

�s
(us � ug);

Ps�PN
�s�s

;
(us�ug)(1�w)PN

�s�sTs

�>
;

~G =

�
�

[�g(1�w)
Tg

Ts
PN��gc

2
g]

�g
(us � ug);

PN�Pg
�g�g

; �
(us�ug)(1�w)PN

�g�gTs

�>
:

The simple form of the matrix eF allow the eigenvalues and eigenvectors
to be calculated analytically. The characteristic velocities are simply those
for the solid phase us � cs, us, us + cs, the gas phase ug � cg, ug, ug + cg,
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and an additional characteristic velocity us from the compaction dynamics
equation.

We note that the characteristic velocity us is two-fold degenerate. For
the BN model (i.e., w = 1) this does not lead to any problems since the
right eigenvectors are found to be complete (except at isolated surfaces in
the state space). The situation is di�erent for the modi�ed BN-model. The
above analysis shows that the modi�ed nozzling terms can lead to the model
not being hyperbolic. We investigate this point next.

The right eigenvector corresponding to the degenerate eigenvalue us re-
quires special consideration. Let the components of the eigenvector be de-
noted by qi. The third component of the eigenvalue equation eF~q = us~q
is

usq3 +
(us � ug)(1 � w)PN

�s�sTs
q4 = usq3 :

This implies that q4 = 0 unless either w = 1, PN = 0 (no nozzling) or
us = ug (single velocity). If q4 = 0 then there is only one right eigenvec-
tor, (0; 0; 1; 0; 0; 0; 0), corresponding to the two-fold degenerate eigenvalue
us. A second linearly independent eigenvector for the two-fold degenerate
eigenvalue us can be found in terms of a time dependent solution of the form

(b1; b2; t; b4; b5; b6; b7) ; (95)

where bi are calculable constants. However, the t-dependence in Eq. (95)
renders the associated linearized problem ill-posed [51]. Any initial data that
selects this right-eigenvector would lead to an unbounded, linear growth of
the solution with time.

If w = 1, then the additional right eigenvector is
�
PN�Ps

�s
; 0; 0; 1; 0; 0; 0

�
.

Hence, for the two-phase model equations to be hyperbolic we require w = 1.
Thus, PN = Pg and the velocity associated with the nozzling in the energy
source term must be the solid particle velocity used to convect the volume
fraction. As a consequence, nozzling does not contribute to the dissipation
of either the solid or the gas phase. Since the Hugoniot jump equations
are compatible with �s continuous across a shock [21], the non-conservative
nozzling term, @�s=@x, does not cause a problem for the wave structure.
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Figure Captions and Figures

Figure-1 { Schema showing the forces acting on the HMX grains in a weak
compaction wave. The variable gray shaded areas represent the Hertz
stresses [52], while the arrows indicate the gas pressure. The unstressed
regions of the HMX crystals are shown as light gray. The solid grains
\feel" both of these forces.

Figure-2 { The variation in the local number density of grains on the microstruc-
tural level appears as a variation of porosity on the continuum level.
The variation in porosity acts as a nozzle applied to the gas ow.
Darker shading indicates a higher density of particles.

Figure-3 { Quasistatic compression data for porous HMX bed by Elban &
Chiarito [36]. Plotted are the �ts to their Exps. 8, 9, 11 and 17. Also
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shown is the �t to the analytic expression �s = �� �(�s��
0
s)�ln(�g)=�g,

using � = 1:27 � 10�2 GPa and �0
s � 0:7.

Figure-4 { The quasistatic compaction curve, �s = �� � (�s��0
s) � ln(�g)=�g for

a granular HMX sample initially at �0
s = 0:73, where � = 12:7MPa, is

shown. Two release isentropes (unloading curves), based on the data
in [33] and denoted as A and B, are also shown. They reveal that the
energy recovered from the samples on unloading from �s = 0:95 and
�s = 0:85 is very small (the shaded area). The model treats all the
energy under the �s�s curve as being recoverable.

Figure-5 { Hugoniot loci (a) in the P{V plane and (b) in the Ts{P plane. The
dotted line is the locus for non-porous (pure) solid. The other three
loci are for porous solid with �0

s = 0:73. Whether compaction energy
(B-integral) is included in the jump condition has little inuence on
the pressure. The short dashed line neglects in addition variations in
density, i.e. � = �s�

0
s.

Figure-6 { The ratio of the compaction work to the B-integral (i.e.,h
Ps
2�0s

(�s
�0s
� 1)�B

i
=B) vs the inverse of the �nal state of compaction

(1=�s) is shown for two representative cases. The compaction work is
roughly 2-3 times the B-integral at �s = 0:95. Since only the com-
paction work measures the dissipated energy in this model, the present
model underestimates the total \frictional" heating available for reac-
tion ignition by 25-33% for these examples. Larger errors are made
for lower pressure waves.

Figure-7 { The initial reaction rate (computed using the Arrhenius form given
above) as a function of shock temperature (see Appendix I). The dot-
ted and solid lines correspond to initial solid volume fraction �s = 1
and 0.73, respectively. The e�ects of porosity are dramatic at higher
pressures, leading to a much higher bulk solid temperature and very
rapid reaction.
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